Progress report: DOM/JDOM

Daniel Justice

DOM (Document Object Model)

The XML Document Object Model (DOM) is a programming interface for XML documents. It takes an XML document, which in our case is a petri-net, and represents it as an object tree held in memory. The nodes of this object tree correspond to the elements of the XML document. In the DOM specification, each element of an XML document is represented down to the smallest detail, so it is possible to build up a complete concrete model of the petri-net system. The DOM also defines a set of interfaces that allow access to the representation of this model. It can be summarised as follows:

· A Model – The DOM models an XML document. The core specification states that “With the Document Object Model, programmers can build documents, navigate their structure, and add, modify, or delete elements and content.

· Set of Requirements – The DOM is a set of requirements that each implementation of the DOM must follow.

· Set of Object Definitions – The DOM is an object-oriented specification that specifies a set of interfaces, properties, and behaviours for each object.

For more information check out the W3C at http://www.w3.org/TR/DOM-Requirements
SAX (Simple API for XML)

The SAX API is an event-based parser for XML documents. This means that the information is read into the computer program as a stream of events. (DOM on the other hand is a tree-based parser.) SAX has the advantage over DOM that you can ignore the parts of the document in which you are not interested. In addition to saving memory, this means that better performance is achieved, as the entire document tree does not need to be constructed. However, the document tree does make any model easier to traverse and manipulate.

JDOM (Java Document Object Model)

The JDOM API is a new API for reading, writing and manipulating XML. It is optimised for the Java programmer and written with the premise that using XML should be intuitive, simple, and productive. According to Jason Hunter at JavaWorld “JDOM users don’t need to have tremendous expertise in XML to be productive and get their jobs done”.

Its many advantages include:

· Operates well with existing standards – SAX, DOM.

· Capable of reading and writing to existing DOM and SAX-receiving components.

· Designed to be straightforward for Java programmers.

· Takes the best concepts from existing API’s, eg. DOM and SAX, and creates a new set of interfaces which incorporates them.

An XML document is represented by JDOM as an instance of the class org.jdom.Document. To construct a document from an existing XML file we use something like:

SAXBuilder builder = new SAXBuilder();
Document doc = builder.build(myfile.xml);
The first line specifies that we want to use the SAXBuilder, which listens for the SAX events and builds a corresponding document in memory. (This builder class is found in the org.jdom.input package.) The second line specifies the name of the document to create, and its source – myfile.xml.

One important point about XML documents is that they must always contain a root element. It is this root element that is the starting point for accessing the information contained within a document. For example <net> is the root element in the following:

<net id=”n1”>

<place id=”p1”>

…

</place>

<place id=”p2”>

…

</place>

</net>

This root element is available directly using the following method:

Element my_root = doc.getRootElement();

As we have already mentioned our petri-net is represented as a tree in the DOM, hence we access the sub-elements as children. The element my_root contains the two places with id p1 and id p2. They can be obtained with something like:

// Get a list of all direct children (places).

List places = element.getChildren("place");

For more examples, check out Jason Hunter’s JavaWorld article at JDOM tutorial from JavaWorld
