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Abstract The Petri Net Markup Language (PNML) is a proposal for
an interchange format for Petri nets, which supports all kinds of Petri
net types. New extensions to Petri nets can be easily defined as a new
Petri net type.

In this paper, we propose modular PNML, which allows us to build Petri
nets in a modular way. As PNML itself, modular PNML is independent
from a particular Petri net type. The semantics of modular PNML is
defined by a translation to pure PNML independently from the concrete
Petri net type. Therefore, the module concept can be used with any tool
that supports pure PNML or a future standard, which is currently evolv-
ing from it.
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1 Introduction

Many concepts for defining Petri net modules and for building Petri nets from
modules have been proposed in the literature. Most proposals, however, are
restricted to a particular version of Petri nets. Some theoretical work has been
done to unify these proposals and to extract the common principles (see [4] for an
overview). These approaches, however, do not work for ‘nasty’ Petri net types—
at least, it is hard to make them work. Moreover, these approaches are not so
much interested in interchanging files among different tools and in a comfortable
way for creating several instances of the same module.

In this paper, we propose a module concept that works for all Petri net
types. Though simple and without a deep theory, this concept provides quite
powerful means for building Petri nets in a modular way. Moreover, it has a
clear semantics, which is independent from a particular Petri net type. The work
on this concept was inspired by a talk of Shmuel Katz on the VeriTech project
[7]. The VeriTech project aims at integrating many verification tools available
in the Formal Methods community. In his talk, Shmuel Katz mentioned that
they could not find an appropriate Petri net tool or an appropriate Petri net
file format that could serve as an interface to the VeriTech project. Essentially,



all formats were missing an appropriate concept of modularity. Therefore, Petri
nets are not yet integrated into VeriTech.

So, we started to think on an appropriate format. In order not to exclude
any Petri net type, we thought of a format that is independent from a particular
Petri net type!. By the way, this independence from a particular Petri net type
helped us to extract the essence of the module concept. In the end, we came up
with a format which resembles the module concept of SMV [9], a well-known
model checking tool (see NuSMV User Manual [2] for details). It supports the
definition of modules that can be instantiated several times. Then, a system can
be built from instances of modules. In contrast to SMV, our concept is tuned to
Petri nets.

2 The Idea

Before going into the technical details, let us briefly illustrate the basic idea of
the module concept. To this end, we use a simple example, where the Petri net
type is classical P/T-systems.

First, we consider the definition of a module M1. The definition of this mod-
ule is shown in Fig. 1. Module M1 consists of two places x and y, two transitions
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Fig.1. A module M1

tl and t2 and some arcs. This internal implementation, however, is not accessible
from outside the module. In order to give the environment access to some in-
ternal elements of the module, the module defines an interface. In our example,
the interface consists of a place pl, which is imported from the environment of
the module, and a place p2, which is ezported to the environment of the module.
The import place pl is a formal parameter, which is supplied when instantiating
the module (see below); it is represented by a dashed circle. The export place
can be used in the environment of an instance of the module; it is represented
by a solid circle. The interface and the implementation of a module are related

! Actually, we were working on a universal file format for Petri nets [6] at that time,
but did not yet consider modularity.



by references. In our example, place? x refers to import place pl, which is rep-
resented by a dashed arrow from x to pl. So, the place x is a representative of
the place that will be provided as a parameter when the module is instantiated.
Likewise, the export place p2 refers to place y. So, a reference to place p2 of an
instance of the module actually refers to place y (see below).

Next, we build a net from several instances of module M1. Figure 2 shows
a graphical and a simple ad-hoc textual representation of a net nl with three
instances of module M1, which are named m1l, m2, and m3, respectively. In the
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def net nil:

{ place p: 1;
ml = instance Mi(pl pP);
m2 = instance Mi(pl = ml.p2);
m3 = instance M1(pl = m2.p2);

Fig. 2. A net nl built from three instances of module M1

definition of nl, we first define a place p with initial marking 1. Then, we define
three instances of M1. The first instance m1 takes the previously defined place
p as the actual parameter for pl. The second instance takes the export place p2
of ml (denoted by ml.p2) as the actual parameter for pl. Likewise, the third
instance takes m2.p2 as the actual parameter for pl. Altogether, the net nl
gives us the P/T-system shown in Fig. 3. We call this P/T-system the semantics
of nl. This semantics will be defined, by recursively inlining the modules for
the corresponding instances. As expected, the three instances form a line, which
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Fig. 3. The semantics of nl

2 In the technical part, we will see that x is not a place. Rather, it is a reference
place with a reference to the import place pl. This is the reason for the hatched
representation of this place.



starts with place p and which links p2 of an instance with p1 of the next instance.
The names of the places and transitions in the different instances are qualified
by the corresponding instance in order to avoid name clashes. Note that the
import places have completely vanished (they are only representatives for the
actual parameters).

Of course, the number of instances and their arrangement may be different in
other nets built from module M1. For example, we can arrange the three instances
of module M1 in a circle (or a triangle) by passing m3.pl as a parameter to the
first instance as shown in Fig. 4. We will see in the formal definition of the
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def net n2:

{ ml = instance M1(pl = m3.p2);
m2 = instance Mi(pl = ml.p2);
m3 = instance Mi(pl = m2.p2);

Fig. 4. Another net n2 built from three instances of module M1

semantics, that referring to the export place of an instance before the definition
of this instance does not cause problems. Actually, the order in the textual
representation does not play any role. The semantics of n2 is shown in Fig. 5.

Fig. 5. The semantics of n2



This finishes the illustration of the module concept by the help of some ex-
amples. Of course, there are some more features, which will be discussed in
the technical part. In particular, modules themselves may use instances of other
modules in their definition provided that there are no cyclic dependencies. More-
over, a module may import and export also transitions and all kinds of symbols.
The nature of the legal symbols and their meaning depend on the particular
Petri net type. The module concept just provides a means to identify symbols
such that they can be imported to and exported from modules.

In the above examples, we have used classical P/T-systems. The module
concept, however, is not restricted to this Petri net type. It works for any Petri
net type. Here, we are faced with the following problems:

1. We must have a format that captures any Petri net type.
2. We must define the semantics for the module concept independent from a
particular Petri net type.

The first problem has been solved already by a generic XML based interchange
format for Petri nets that, in principle, supports all Petri net types: the Petri
Net Markup Language (PNML) [5]. Since the module concept is built upon this
format, we rephrase the basic concepts and the XML syntax of the PNML in
Sect. 3.

Then, in Sect. 4, we present the module concept and its XML syntax, which
is called modular PNML. In order to give it a semantics, we define a mapping
from modular PNML to pure PNML, which we call inlining. This inlining works
independent from a particular Petri net type. This way, we do not need to know
the semantics of the different Petri net types—we do not even need to know the
syntactically correct Petri nets of this particular type. This solves the second of
the above mentioned problems.

The inlining will be discussed in Sect. 4.3. Currently, we are developing a
tool for this inlining operation for PNML resp. a standard interchange format
currently evolving. This tool can be used in combination with any tool that
supports the PNML or the future standard interchange format. Thus, the module
concept can be used in combination with any of these tools.

3 Petri Net Markup Language

In this section, we give an outline of the current version of the Petri Net Markup
Language (PNML) [5]. In this paper, we call it pure PNML in order to distinguish
it from its modular extension, which will be presented in Sect. 4. In Sect. 3.1,
we introduce the concepts of pure PNML; in Sect. 3.2, we give some examples.

3.1 The Concept

In the following, the concepts and the terminology of pure PNML are described.
They are independent from any implementation of Petri nets or a concrete in-
terchange format.



Petri nets and objects. A file that meets the requirements of the interchange
format is called a Petri net file; it may contain several Petri nets. Each Petri net
consists of objects, where the objects, basically, represent the graph structure of
the Petri net. Thus, an object is a place, a transition, or an arc. For structuring
a Petri net, there are three other kinds of objects, which will be explained later
in this section: pages, reference places, and reference transitions. Each object
within a Petri net file has a unique identifier, which can be used to refer to this
object.

For convenience, we call places, transitions, reference places, and reference
transitions nodes, and we call a reference place and a reference transition a
reference node.

Labels. In order to assign further meaning to an object, each object may have
some labels. Typically, a label represents the name of a node, the marking of a
place, the guard of a transition, or the inscription of an arc. The legal labels—
and the legal combinations of labels—of an object are defined by the type of
the Petri net, which will be defined later in this section. In addition, the Petri
net itself may have some labels. For example, the declarations of functions and
variables that are used in the arc-inscriptions could be labels of a Petri net.

We distinguish between two kinds of labels: annotations and attributes. Typ-
ically, an annotation is a label with an infinite domain of legal values. For ex-
ample, names, markings, arc-inscriptions, and transition guards are annotations.
An attribute is a label with a finite (and small) domain of legal values. For ex-
ample, an arc-type could be an attribute of an arc with domain: normal, read,
inhibitor, reset (and maybe some more). Another example is attributes for
classifying the nodes of a net as proposed by Mailund and Mortensen [§]. Be-
sides this pragmatic difference, annotations have graphical information whereas
attributes do not have graphical information®.

Graphical information. Each object and each annotation is equipped with
some graphical information. For a node, this information is its position; for an
arc, it is a list of positions that defines intermediate points of this arc. For
an annotation, the graphical information is its relative position with respect to
the corresponding object*. Absolute as well as relative positions refer to the
reference point of an object or of an annotation respectively. By default, the
reference point is the middle of the graphical representation for an object; it is
the lower left point of the graphical representation for an annotation. For an
arc, the reference point is the middle of the first segment of the arc. Future
extensions might allow us to define the position of a reference point of an object
or an annotation explicitly. All positions refer to Cartesian co-ordinates (z,y),

3 Of course, the attribute arc-type with value inhibitor may affect the appearance
of the corresponding arc. But, this effect is in the meaning of the attribute itself and
does not come from some extra graphical information in the attribute.

4 If it is an annotation of the net itself, the position is absolute.



where the z-axis runs from left to right and the y-axis runs from top to bottom;
but, we do not fix a unit’.

Pages and reference nodes. A Petri net can be structured by the help of pages
which is known from several Petri net tools (e. g. Design/CPN [3]). A page is an
object that may consist of other objects—it may consist even of further pages.
An arc, however, may connect nodes on the same page only. In order to connect
Petri net nodes on different pages, we can use reference nodes: A reference node
refers to any node of the Petri net—located on any page of the net. We require
only that there are no cyclic references; this guarantees that, in the end, each
reference node refers to exactly one place or exactly one transition of the Petri
net. A reference node is only a representative for this node. Reference nodes
may have labels. But, these labels do not have much meaning. Concerning the
semantics of the net, the reference node inherits the labels from the node it
refers to. This way, it is always possible to flatten the corresponding net without
knowing the meaning of labels at all. Flattening means to merge each reference
node to the node it refers to (directly or indirectly) and to ignore the labels of
the reference nodes.

Tool specific information. For some tools, it might be necessary to store some
internal information, which is not supposed to be used by other tools. In order to
store internal information, each object and each label may be equipped with tool
specific information. The internal format of the tool specific information is up to
the tool. But, tool specific information is clearly marked and is assigned the name
of the specific tool. Therefore, other tools can easily ignore this information.
In general, we discourage the use of tool specific information. In some cases,
however, tool specific information might be unavoidable—at least in the basic
version of PNML.

Types and conventions. Up to now, we have discussed the general structure
of a Petri net file. The available labels and the legal combinations of labels for
a particular object are defined by a Petri net type. Technically, a Petri net type
is a document that defines the XML syntax of labels; e.g. a Document Type
Definition (DTD) file or a schema defined with an XML schema language such
as XML Schema or TREX.

In principle, a Petri net type can be freely defined. In practice, however, a
Petri net type chooses the labels from a collection of predefined labels that are
provided in a separate document: the conventions. The conventions guarantee
that the same label has the same meaning in all Petri net types. This allows us
to exchange nets among tools with a different, but similar Petri net type.

Up to now, the conventions define only those labels that are necessary for
high-level nets. Defining further labels and maintaining the conventions doc-

% Size of objects and labels as well as units could be included in a future version.



ument is an on-going process. Here, we do not discuss these conventions; we
provide the technique for defining new Petri net types and new labels only.

3.2 PNML by Examples

In this section, we briefly present the PNML® syntax by examples. PNML is
based on XML [10]. The examples refer to the PNML version 0.99 [5]. In PNML,
the net, the Petri net objects, and the labels are represented as XML elements.
An XML element is included in a pair of a start tag <element> and an end tag
</element>. An XML element may have XML attributes’ that equip an element
with additional information. An XML attribute of an XML element is represented
by an assignment of a value to a key (the attributes name) in the start tag of
the XML element <element key=avalue>. XML elements may contain text or
further XML elements. An XML element without text or sub-elements is denoted
by a single tag <element/>. In our examples, we sometimes omit some XML
elements. We denote this by an ellipsis (. ..).

The tags of the XML elements defined in PNML are named after the con-
cepts (e.g. <place>, <transition> or <page>) given in Sect. 3.1. These tags of
the concept are the keywords of PNML; they are called PNML elements. Labels,
however are named after their meaning. Thus, any unknown XML element ap-
pearing in a Petri net or in an object can be clearly identified as a label of the
net or the object. In our examples, the PNML keywords and the label for the
name of an object are underlined. The tags of the other labels, however, are not
underlined because they are keywords of a certain Petri net type definition not
of the PNML.

The unique identifier of a Petri net or an object of a Petri net is always
represented by an XML attribute id of the corresponding XML element. The
value of this attribute must meet the requirements for the attribute type ID of
XML (cf. [10]); i.e. it must be a string starting with a letter or the underscore
character, followed by letters, digits or several other characters.

The first example (List. 1) shows the representation of a place with the iden-
tifier p1. The place has two labels, more precisely two annotations. The first one
represents the name of the place <name>, whereas the second one represents its
initial marking <initialMarking>. An annotation consists of its value <value>.
Both, a place and an annotation may have graphical information represented by
<graphics>. The concrete definition of the XML element <graphics> depends
on the context in which it appears. A place has a position, whereas an annotation
has an offset position.

A transition (List. 2) is represented in a similar way. Transition t1 contains
a tool specific information marking the transition as hidden in the example tool
PN4ALL version 0.1. Syntactically, toolspecific information is represented by an

5 Please refer to http://www.informatik.hu-berlin.de/top/pnml/ for a full defini-
tion of PNML.
" Do not confuse XML attributes with attributes of Petri net objects.
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Listing 1. The PNML code of a place

<place id="pi1">
<graphics>
<position x="10" y="20"/>
</graphics>
<name>
<value>ready to produce</value>
<graphics>
<offset x="—5" y="2"/>
</graphics>
</name>
<initialMarking>
<value>P</value>
<graphics>
<offset x="0" y="0"/>
</graphics>
</initialMarking>
</place>

Listing 2. The PNML code of a transition
<transition id="t1">

<toolspecific tool="PN/all" version="0.1">
<hidden/>

</toolspecific>
</transition>

Listing 3. The PNML code of an arc

<arc id="al" source="pl1" target="t1">
<graphics>
<position x="7" y="19"/>
<position x="5" y="17"/>
</graphics>
<inscription>
<value>x</value>
<graphics>
<offset x="-8" y="5"/>
</graphics>

</inscription>
<type value="inhibitor"/>
</arc>
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Listing 4. The PNML code of a page

<page id="pg1">
<name>
<value>Example page of the net</value>
</name>
<referencePlace id="rp1" ref="p1">
<name>. ..</name>
<graphics>
<position x="20" y="20"/>
</graphics>
</referencePlace>
<referenceTransition id="rt1" ref="t1">

</referenceTransition>

<place id="p2">...</place>

<transition id="t2">...</transition>
<arc id="a2" source="rp1" target="t2">

</arc>

</page>

XML element <toolspecific>; this element must have at least the shown XML
attributes and may contain further XML elements defined by the tool.

An arc (List. 3) runs from a source node, referred to by the XML attribute
source, to a target node (target). PNML requires that also each arc has a unique
identifier. This simplifies the implementation of XML parsers. The graphical in-
formation of the arc contains a list of points. These points represent intermediate
points of the arc. The offset in the graphical information of the <inscription>
defines the position of the label relative to the reference point of the arc. Arc al
has an additional attribute called <type>; it indicates that it is an inhibitor arc.

Listing 4 shows the representation of a page and of reference nodes of a Petri
net. A page may have the same Petri net elements as the net itself—even pages
and reference nodes. A reference node (indicated by tags <referencePlace> or
<referenceTransition>) refers to a node of the net via the XML attribute ref.
Its value refers to the identifier of a node of this net. Furthermore, a reference
node may have its own graphical information, tool specific information, and
labels. Remember that these labels have no real meaning, since they are ignored
in the underlying flattened net. But, they allow reference nodes to carry their
own name etc. Note that an arc on a page starts and ends in nodes or in reference
nodes defined on the same page.

The whole Petri net consists of pages and of Petri net elements. Listing 5
shows a net. It has an annotation defining the name of the net. The type of
the net is available via the Uniform Resource Identifier (URI) given in the XML

10
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Listing 5. The PNML code of a net

<net id="n1" type="HLnet.zsd">
<name>
<value>Example high-level net</value>

</name>

<place id='p1">

</place>

<page id="pg1">

</page>

</net>

attribute type. In our case, type refers to a file that defines the legal labels and
their syntax for the particular Petri net type. A description of this file, however,
is beyond the scope of this paper.

4 Modular PNML

In this section, we introduce modular PNML, which equips PNML with a module
concept. A module defines a building block from which other modules or Petri
nets can be built®. A module consists of an interface and a module body. The
interface defines those Petri net nodes that are visible from outside the module,
whereas the module body defines the implementation of the module.

Section 4.1 introduces the module concept. Then, Sect. 4.2 describes the
syntax of modules in PNML. And finally, Sect. 4.3 explains the semantics of the
module concept.

4.1 The Concept

Now, we describe the concepts of the modular PNML. In the examples of this
section, we refer to the figures (esp. Fig. 1, 2, and 4) in Sect. 2. The examples
illustrate the module concept. There, we have seen that a module imports and
exports some nodes. This way, it is possible for a module to refer to a node
defined in its environment (the node passed as an argument for an import node
when the module is instantiated). Likewise, the environment may refer to nodes
of an instance of the module (the export nodes).

& Actually, a net is not built from modules, but from instances of modules. This allows
us to use several instances of the same module to built a net.

11



Symbols. Sometimes, it is necessary to pass other arguments than nodes to
a module. For example, a module could implement a channel for some type
of messages, where the particular type is a sort provided by the environment
when instantiating the module. This is known from templates in C++ or from
parameterized data types, in general.

Since modular PNML should be independent from a concrete Petri net type,
we cannot fix a syntax for legal parameters for a module. But, we permit the
definition of symbols—without knowing their meaning. These symbols may be
imported and exported in the same way as nodes. Thus, symbols are objects, too.
In particular, there are also reference symbols which refer to other symbols. A
symbol may occur within any PNML element and must have a unique identifier.

In high-level Petri nets, the symbols could be sort symbols, operation sym-
bols, and variable symbols, which define the legal inscriptions of places and arcs.
By allowing to export and import these symbols, it is possible to define such a
symbol once and to use it in other modules.

Identifiers. For a reason that will become clear in Sect. 4.3, we restrict the
values of identifiers (values assigned to the XML attribute id) in modular PNML
to strings not containing a dot character (.).

Module. Simply spoken, a module is a net with an interface. For an instance
of a module, only the nodes and the symbols of the interface are accessible from
outside the instance. The rest of the module instance is its implementation.

Import and Export. The interface of a module contains nodes and symbols
which can be accessed from outside the module. Remember that nodes and
symbols are objects. We distinguish two kinds of interface objects: import objects
and export objects. Import objects are representatives of nodes and symbols that
are provided as parameters upon instantiation of the module. Export objects are
defined inside the implementation of the module. Thus, an export object allows
the environment to refer to some object in the implementation of the module
without knowing implementational details. Import objects define an identifier
such that objects actually defined outside the module and passed as a parameter
upon instantiation of the module can be used inside the implementation of the
module.

Global Nodes, Symbols, and References. Sometimes, it is conveniant to
have global objects in a net, which can be used in all modules. To this end
introduce the concept of global objects and global references (a reference to a
global object). A global object can be referred to via a global reference from
everywhere in the net even in modules and their instances without explicitly
passing these objects as a parameter to these modules.

12



Module Instances. A module can be used in a net (or in another module) by
instantiating the module. This means that an instance defines a unique identifier
within the net and assigns actual objects of the net to the parameters (i.e. the
import objects) of the module. Export objects of module instances are regarded
as reference objects. This means that export objects can be used like reference
objects. They become actual objects of the net.

Let us consider an example module as shown in Fig. 1. We added several
graphical elements to the common Petri net notations in order to distinguish
the special elements of a Petri net module. Both, the interface and the im-
plementation of a module are placed into boxes. The identifier of a module is
depicted in bold face inside the module interface. A node or a symbol of the im-
plementation may refer to an import object of the interface. This representative
of an object of the environment is depicted hatched. Likewise, an export object
refers to a node or a symbol in the implementation such that an object in the
environment referring to an export object of an instance of the module actually
refers to that implemented node. In order to avoid cyclic references, an export
object must not transitively refer to one of its import objects. References are
depicted by dashed arcs.

In order to hide the implementation of a module we will draw the interface of
a module without its implementation when instantiating a module. The interface
of the module contains the interface objects and the module identifier.

When a module is instantiated some object must be assigned to each import
object of the module. This is achieved by providing a reference to some object to
the enclosing net or module for each import object of the instantiated module.
Each instance is assigned a unique name which is depicted at the module inter-
face. Then, the export objects of the instance can be referenced by a qualified
names, i.e. by the name of export object preceded by the name of the instance
(separated by a dot).

Figure 2 shows an example of an instance of a module in a net. This net
consists of the place p (with one token in its initial marking) and the instances
ml, m2, and m3 of the module M1 defined in Fig. 1. Figure 4 shows another
example. Here, we dropped the place p because each export place of an instance
serves as an import place for the next instance.

4.2 Syntax

Now, we explain how the module concept presented in Sect. 4.1 can be integrated
into the Petri Net Markup Language (modular PNML) by extending pure PNML.
We use the example nets of Sect. 2 to show the syntax of modular PNML. Our
example PNML code does not contain graphical information in order to keep the
examples small.

In modular PNML, we introduce the PNML element <module> which contains
both the interface of the module and its implementation. The interface is tagged
by <interface> and contains import and export objects of the module. The
nodes of the interface may have graphical information as described in Sect. 3.

13
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Listing 6. The PNML Code of the module in Fig. 1

<module name="MI1">
<interface>
<importPlace id="p1"/>
<exportPlace id="p2" ref="y"/>
</interface>
<referencePlace id="z" ref="p1"/>
<transition id="t1"/>
<transition id="t¢2"/>
<place id="y"/>
<arc source="z" target="t1"/>
<arc source="t1" target="y"/>
<arc source="y'" target="t2"/>
<arc source="t2" target="z"/>
</module>

The rest of the module contains the implementation of the module, these are
the same elements as in a net of pure PNML. In addition, an implementation of
a module may use instances of any other module. The only restriction is that
there is no cyclic dependency.

Listing 6 shows the modular PNML code of module M1 in Fig. 1. There is
a module with its interface and its implementation. The interface of a module
contains nodes and symbols with their identifiers to be imported or exported.
In our example (List. 6, cf. Fig. 1), there is one import place (p1) and there is
one export place (p2). The implementation part in our example does not use
other modules. Note that reference objects may refer to import objects but not
to export objects of the interface of the module. Export objects refer to objects
of the implementation. But, they are not allowed to transitively refer to import
objects.

If a module M; (or a net) contains an instance of a module M, then we
say My uses Ms. The use of a module is tagged by the modular PNML element
<instance>. This element refers to the Uniform Resource Identifier (URI) of the
corresponding module with the instance’s XML attribute ref. Remember, that
the uses relation must not have cycles. The modular PNML element <instance>
contains references to nodes and symbols which serve as actual parameters for
the import objects of the module. Such a reference names the parameter that
is instantiated and refers to a ‘real’ object occurring in the instantiating net or
module.

In modular PNML, references to export objects of an instance are composed
of a reference to that module instance (the XML attribute instance) and a
reference to an export object of that instance (the XML attribute ref).

Listings 7 and 8 show the modular PNML code of the net in Fig. 2 and 4
respectively. Net n1 (List. 7, cf. Fig. 2) contains a place p with an initial marking
of one token and three instances of the module M1. Place p serves as the actual

14
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Listing 7. The PNML Code of the net in Fig. 2

<net id='m1">
<place id="p">
<initialMarking>
<value>1</value>
</initialMarking>
</place>
<instance id='"mi1" ref=URI#M1>
<importPlace parameter="pl" ref="p"/>
</instance>
<instance id="m2" ref=URI#M1>
<importPlace parameter="pl" instance="mi1" ref="p2"/>
</instance>
<instance id='"m3" ref=URI#M1>
<importPlace parameter='pl" instance='"m2" ref="p2"/>
</instance>
</net>

Listing 8. The PNML Code of the net in Fig. 4

<net id='n1">
<instance id="mil" ref=URI#M1>
<importPlace parameter="p!" instance='"m3" ref="p2"/>
</instance>
<instance id='"m2" ref=URI#M1>
<importPlace parameter="p!" instance="mi" ref="p2"/>
</instance>
<instance id='"m3" ref=URI#M1>
<importPlace parameter="p!" instance='"m2" ref="p2"/>
</instance>
</net>

parameter for p1 in instance m1. The module instance m2 gets the export place
p2 of the instance m1 as its actual parameter pl and so on. Net n2 (List. 8, cf.
Fig. 4) contains three instances of the module M1, such that the export place p2
of one instance serves as the actual parameter for the import place p1 of another
instance.

Furthermore, modular PNML extends pure PNML with global nodes and
global symbols. They are tagged by <globalPlace>, <globalTransition>, and
<globalSymbol> respectively. Similarly, we add the XML attribute gref to ref-
erence objects and import parameters of interfaces. This XML attribute is al-
ternative to both the XML attribute instance and ref. The value of the XML
attribute gref refers to a globally defined object.
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4.3 Semantics

In this section, we define the semantics of modular PNML by translating it to pure
PNML. This way, each net that is inductively built from instances of modules is
translated to a Petri net without modules or instances of modules. In order to
preserve the structure of the instances, each instance of a module is located on
a separate page (with the name of the corresponding instance) and is related to
the other instances by references.

The basic idea of this translation is bottom-up inlining all instances of mod-
ules. This bottom-up inlining is possible because the uses relation among modules
is acyclic (and Noetherian). So we can start from those modules that do not use
instances of other modules—we call these modules basic modules. In a module
M that has only instances of basic modules, each instance is replaced by the
corresponding basic module. This way, the module M becomes a basic module
itself and can be inlined to the modules of the next level—and so on. Of course,
we must take care that all objects of two different instances of a module carry
different names; this can be achieved by an appropriate naming scheme and by
consistently renaming all identifiers and references of a module, when inlining
an instance of that module. This will be explained in more detail below.

Since we can apply the inlining operation recursively starting from the bot-
tom, it is sufficient to discuss the inlining of a basic module to another module
or net. Let us consider a module M in which an instance m of a basic module M1
occurs. Examples of two such modules are graphically represented in Fig. 6—for
simplicity sake, we have only places in the interfaces of these examples.

{ im M O
A b2\

" O
= Pl P2
TN ML ? ?
pl pZO

ml
@ " O ’ ’
<] - ;
Spl p2

Fig. 6. A module M with an instance m of a basic module M1

For inlining instance m of module M1 into module M, we start with the
module M1 as shown in Fig. 6 and transform it in the following steps:

Step 1 First, we convert each export object of M1 to a reference object. Each
new reference object receives the same identifier and the same reference as
the corresponding export object.
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Step 2 Then, we consistently add a prefix ‘m.” to each local identifier and to
each local reference. The result of steps 1 and 2 is shown in Fig. 7. Note that

mpl ML m.p2 @

m.x my

Fig. 7. Module M1 after applying steps 1 and 2

the identifiers of the import objects receive also the prefix m.

Step 3 Next, we replace the import objects by a reference object, were the
identifiers remains the same. Each of these objects refers to the value that is
passed as a parameter to this instance. The result is shown in Fig. 8. Note
that these references are still outside of the module.

@ @
o O

m.x my

Fig. 8. Module M1 after steps 3

Step 4 At last, we place the resulting net in a separate page with identifier m
and replace the instance m of module M1 in module M by this page as shown
in Fig. 9

After these four steps, instance m is inlined into module M—there is no in-
stance m of module M1 anymore. Rather, there is a page with the corresponding
net. In the same way, we can inline all other instances into the module; in the
end, module M is a basic module and can be inlined into modules with instances
of M. Recursively, we can proceed all the way up in the module hierarchy until
we reach the net in which these modules are used. Then, we can inline the basic
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@ O

m.x m.y

Fig. 9. Module M after steps 4

modules into this net, which gives us a net in pure PNML—without any instances
of modules. Note that this net still consists of pages and has reference nodes.
Eliminating pages and reference objects was already discussed in Sect. 3.1.

The consistent renaming of local identifiers and references guarantees that
there are different instances of nets in the inlined version for different instances of
modules in the original version. The only exception are global identifiers—these
remain global by definition. Note that the acyclicity requirement for references
is met in the constructed pure PNML net, because we do not allow references
from export to import nodes and symbols.

5 Extensions

Sometimes, it is necessary to define many modules which are arranged regu-
larly. For example, an n-bit adder can be composed from n one-bit adders, or a
bounded communication buffer can be built from many one-message buffers in
a row. When the number of such modules becomes larger, it is tedious to define
each instance separately. In order to cope with this problem, modular PNML
can easily be equipped with another feature, which allows us to create many
instances at a time in an array.

Figure 10 shows an example. In the net n100 one hundred instances of module
M1 are created at a time. The first instance m[0] receives the previously defined
place p as an argument; the other instances m[i] receive the export place p2 of
the immediately preceding instance mli-1]. By the help of the case statement,
we can deal with such irregularities. In the example, the first instance needs a
special treatment. All others can be dealt with in the very same way. On the
right hand side of the instantiation, we can refer to the other instances, where
the arithmetic operations on i are modulo the number of created instances.
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def net n100:
{ place p: 1;

m[100] = case i:
0 : m[i] = instance Mi(pl
[1..99] : m[i] instance M1(pl
esac

p)
m[i-1].p2)

Fig. 10. Example: Multiple instances

def net n1000:
{ place p: 1;

m[1000] = case i:
[0..999] : m[i] = instance M1(pl = m[i-1].p2)
esac

Fig. 11. Multiple instances

Another example would be a circle of thousand instances of module M1, which
is shown in Fig. 11. Note that by interpreting the minus operation - modulo 1000
in this case, the export place of the last instance m[999] is linked to the import
place of the first instance m[0].

The semantics and the inlining of multiple instances is, basically, the same
as for a single instance. We must create the given number of instances. For each
number i there is an instance with a unique identifier m[i]. We must take care,
however, that arithmetic operations within the case statement are evaluated
for each created instance, in order to provide the correct name for the referred
instance. Remember that this evaluation is modulo the number of created in-
stances.

For some technical reason, the characters for brackets, ‘[’ and ‘], cannot be
used in XML identifiers. Therefore, m[i] reads m.i in the PNML file. This does
not result in ambiguities in modular PNML, because digits are no legal first
characters in identifiers of PNML and .’ is no legal character in identifiers of
PNML.

Other possible extensions are still to be discussed. For example, it might
be worthwhile to restrict the access to import or export places: An input place
would exclude arcs from some transition of the module to this place; an output
place would exclude arcs from the place to some transition of the module. This
would allow us to rephrase different module concepts known from the literature.
Note that input and output are orthogonal to import and export. An export
place of a module could be an input place, or it could be an output place. Input
and output gives us information on the direction of the token flow through a
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place. Export and import rather state whether the module or its environment
provides the ‘real’ definition of this node.

6 Conclusion

In this paper, we have equipped PNML with a concept for building Petri nets in
a modular way. In particular, this concept allows us to define modules that can
be instantiated as many times as necessary in another module or a net.

Admittedly, the concept is simple and does not need a deep theory. Still, it
comes with a universal semantics: i.e. a semantics that works with any Petri
net type. Moreover, it provides all constructs necessary for constructing large
systems from smaller components in a hierarchical way—including parameterized
modules (known as templates in C++) and global definitions. Thus, the module
concept resembles the way engineers build systems. In particular, the concept
resembles the concepts used in SMV and other tools from formal verification.
This way, a translation from and to these tools becomes feasible.
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