

1

Department of Computing, Imperial College London
University of London

Investigating Portlet Technology
for Interactive Analytics

Michelle Anne Osmond

A thesis submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy of the University of London and the

Diploma of Imperial College

August 2007

2

I hereby declare that this thesis entitled “Investigating Portlet
Technology for Interactive Analytics” is entirely my own work,

except where specifically acknowledged in the text.

Michelle Osmond August 2007

3

Abstract

This thesis examines and extends portlet technology as an interactive web interface for

performing scientific research with the Discovery Net e-Science infrastructure. This

approach allows services from different sources to be integrated as components within

a single unified web interface, known as a Portal.

Some of the restrictions of developing portlets become particularly significant in a

research context. We discuss a number of the issues encountered while developing the

Discovery Net portlets to the portlet standard, JSR-168, and our solutions. The two

most significant issues encountered are as follows:

1. A research portal needs to provide customised and continually updated

information and tools to its users, but traditional portlets are focused on

providing a single type of service. Therefore to add new features to the portal,

the administrator must obtain and install new portlets.

2. The lack of inter-portlet communication (IPC) in the current Portlet

specification (JSR-168) hinders development of standards-compliant portlets.

IPC is critical for analytical ‘dashboard’-style sites where each portlet is treated

as a component which may interact with others.

We discuss in detail our research to provide solutions for these issues by enhancing

and extending the use of portlet technology, in particular concerning:

1. Discovery Net’s web deployment system, which offers a flexible solution by

providing access to a modifiable store of workflows, with support for

customised web interfaces and visualisation of results, all without any

intervention by the portal administrator.

2. Our development of a JSR-168-compliant IPC library.

To illustrate and drive this work, several example applications have been examined

and supported, including Discovery Net e-Science demonstrations and a production-

quality Translational Medicine Portal.

4

Acknowledgements

Thanks first to my supervisors, Yike Guo and John Hassard, for their continual support

and encouragement, and for introducing me to such fascinating subject areas.

This project has been truly multidisciplinary, and I am very grateful to all the people in

the collaborating research groups and companies who have offered help, advice and

criticism. Particular thanks go to Moustafa Ghanem, Anthony Rowe, Jameel Syed, Vasa

Ćurčin, Anton Oleynikov, Patrick Wendel, and Mark Richards.

My gratitude also to ICSF for letting me look after the library, and to my family and

friends, especially Michael Wright, for always being there.

5

Contents

Chapter 1. Introduction.. 11

1.1 Aims .. 13

1.2 Main Contributions... 14

1.3 Technology... 14

1.4 Thesis Structure ... 14

Chapter 2. Background... 17

2.1 Web Services .. 18

2.2 e-Science and the Grid.. 19

2.3 Discovery Net .. 20

2.4 Java Servlets and JSP .. 22

2.5 Virtual Learning/Research Environments ... 23

2.6 Portals and Portlets ... 24

2.7 Conclusion ... 37

Chapter 3. Analytical Portal Design ... 38

3.1 General advantages of Web Portals.. 38

3.2 Requirements of an Analytical Portal .. 40

3.3 Functional requirements for the Discovery Net Portal.. 42

3.4 Non-functional requirements for the Discovery Net Portal 43

3.5 Discovery Net portlets.. 44

3.6 Portlet Message Flow.. 54

3.7 Software constraints for the Discovery Net portal ... 56

3.8 Choice of Portal implementation .. 57

3.9 Business Intelligence demonstration.. 62

3.10 Conclusion ... 67

Chapter 4. Web Interfaces to Research Services ... 68

4.1 Creating web interfaces.. 69

4.2 Discovery Net Service Deployment ... 75

4.3 Discovery Net's demonstration scientific applications.. 93

4.4 Using multiple services .. 106

4.5 Conclusion ... 108

6

Chapter 5. Inter-portlet communication .. 109

5.1 Portal-specific IPC Implementations.. 111

5.2 Implementation approaches for JSR-168-compliant IPC................................... 118

5.3 Design of a JSR-168-compliant IPC library.. 129

5.4 Page Navigation .. 141

5.5 Limitations of the IPC library.. 142

5.6 Conclusion ... 143

Chapter 6. Translational Medicine Portal: A Case Study of a Complex Portal........ 145

6.1 Aims of the Portal ... 145

6.2 Design Challenges... 146

6.3 AJAX (Asynchronous JavaScript And XML) .. 150

6.4 Portlets developed .. 152

6.5 The Translational Medicine Portal ... 167

6.6 Conclusion ... 171

Chapter 7. Limitations and Improvements for JSR-168 portlet technology 173

7.1 Context.. 173

7.2 Limitations in Portal Design.. 175

7.3 Limitations in Portlet Implementation... 176

7.4 Considerations for the next Portlet Specification ... 196

7.5 Conclusion ... 197

Chapter 8. Conclusions and Future Work... 198

8.1 Future Developments ... 201

8.2 Future Work... 203

8.3 Final Thoughts... 204

Glossary... 205

Bibliography ... 207

Appendices

A1. Functions for retrieving Portlet IDs...218

A2. Discovery Net Papers...220

7

List of Tables

Table 3.1: Feature Comparison of Traditional and Analytical Portals. 42

Table 3.2: Message inputs and outputs of Discovery Net Portlets.................................... 55

Table 3.3: Portal Comparison examining suitability for hosting Discovery Net portlets.

.. 60

Table 5.1: Comparison of Portal-specific implementations of Inter-portlet

Communication (2005) .. 117

Table 5.2: Approaches to storing IPC configuration: GUI presentation......................... 134

Table 5.3: Approaches to storing IPC configuration: storage location. 134

List of Figures

Figure 2.1: Discovery Net software. .. 21

Figure 2.2: Overview of Discovery Net functionality ... 21

Figure 2.3: "My Yahoo".. 26

Figure 2.4: Portal architecture overview... 28

Figure 2.5: Elements of a Portal Page .. 30

Figure 2.6: Example portal page request sequence ... 32

Figure 2.7: Portlet applications... 35

Figure 2.8: Example portal directory tree ... 36

Figure 3.1: Service Portlet ... 45

Figure 3.2: Discovery Net Portal architecture .. 47

Figure 3.3: Service Index Portlet .. 49

Figure 3.4: Tasks Portlet .. 50

Figure 3.5: Userspace Index Portlet ... 51

Figure 3.6: Userspace Item Viewer Portlet, showing a table item..................................... 52

Figure 3.7: Message flow between Discovery Net Portlets. ... 55

Figure 3.8: Oracle Business Intelligence portlet and Oracle Spatial 63

Figure 3.9: Oracle Business Intelligence Portlets ... 64

8

Figure 3.10: Oracle Business Intelligence portlets and Discovery Net services 65

Figure 3.11: Business Intelligence workflow.. 65

Figure 3.12: Decision support with Discovery Net services .. 66

Figure 4.1: European Bioinformatics Institute online services .. 70

Figure 4.2: Partial WSDL of an EBI web service .. 72

Figure 4.3: Generic SOAP client ... 73

Figure 4.4: Comparing approaches to service description by Discovery Net and

standards. .. 74

Figure 4.5: Black-box deployment of a Discovery Net workflow 76

Figure 4.6: Deployment strategies ... 76

Figure 4.7: Form presentation of basic property types ... 79

Figure 4.8: JavaScript-enhanced form properties .. 80

Figure 4.9: Applet form properties .. 80

Figure 4.10: Rendering and submission of a service form (Discovery Net Portal version

2.0) .. 82

Figure 4.11: Modified procedure for rendering custom parameters(Discovery Net

Portal version 3.0) .. 83

Figure 4.12: Display of arbitrary file types in the portal... 85

Figure 4.13: Using browser plugins to display results ... 86

Figure 4.14: Result display using applets ... 86

Figure 4.15: HTML-formatted result display ... 87

Figure 4.16: Display of tabular data .. 88

Figure 4.17: Custom layout of a service form .. 89

Figure 4.18: The Deployment Layout Editor.. 90

Figure 4.19: Creating a wizard-style service layout .. 91

Figure 4.20: Wizard-style service layout in the portal .. 92

Figure 4.21: GUSTO sensor network architecture. .. 94

Figure 4.22: Sensor clusters shown on a map... 94

Figure 4.23: GISViz visualisation ... 95

Figure 4.24: Snapshots of GISViz animation .. 96

Figure 4.25: A GUSTO service for retrieving pollution data ... 97

9

Figure 4.26: A GUSTO service for retrieving scatter plots ... 98

Figure 4.27: Comparison of protein profiles with a mirror plot...................................... 100

Figure 4.28: Visualisations of GM scenario results deployed in the portal 101

Figure 4.29: The GISViz applet deployed in the portal .. 102

Figure 4.30: Two source images used for earthquake analysis 103

Figure 4.31: The Earthquake application in the portal.. 105

Figure 4.32: Discovery Net service instances ... 106

Figure 5.1: Scenario: communication between two portlets .. 109

Figure 5.2: Message board model for IPC... 122

Figure 5.3: Simple IPC using a shared session attribute... 125

Figure 5.4: Cross-context IPC ... 126

Figure 5.5: IBM WebSphere's portlet "wiring" tool ... 128

Figure 5.6: Oracle Portal's page editing mode ... 128

Figure 5.7: A newly-added portlet reading an existing message 131

Figure 5.8: Abstraction of message names.. 133

Figure 5.9: Dynamically-generated IPC configuration forms.. 136

Figure 5.10: UML diagram of the IPC Library ... 137

Figure 5.11: Concrete implementations. ... 138

Figure 5.12: Code fragment showing the use of the IPC library 139

Figure 5.13: IPC library modules ... 141

Figure 6.1: Oracle Discoverer ... 147

Figure 6.2: Oracle Discoverer (2).. 148

Figure 6.3: Overview of the Windber Translational Medicine portal............................. 149

Figure 6.4: Interactions on a normal web page (not using AJAX)................................... 150

Figure 6.5: Interactions on a web page using AJAX.. 151

Figure 6.6: The OLAP browser... 153

Figure 6.7: Graphical display of rows in the OLAP browser... 154

Figure 6.8: Configuration of rows and columns in the OLAP browser. 155

Figure 6.9: Retrieval of raw data from the OLAP browser .. 156

Figure 6.10: The OLAP browser with a categorical column .. 156

Figure 6.11: Defining and displaying a row hierarchy in the OLAP browser............... 158

10

Figure 6.12: Multiple levels of row expansions, governed by the row hierarchy......... 159

Figure 6.13: Binning management interface... 161

Figure 6.14: The wizard for creating or editing binnings. .. 161

Figure 6.15: Manual customisation of numerical bins .. 162

Figure 6.16: Manual customisation of categorical bins... 162

Figure 6.17: The binning wizard. ... 163

Figure 6.18: Patient Sets portlet, allowing sets to be saved, edited and deleted. 165

Figure 6.19: Patient Sets portlet, allowing expansion and selection of sets 165

Figure 6.20: The Patient Viewer portlet .. 166

Figure 6.21: The OLAP browser page ... 167

Figure 6.22: The Binning page.. 168

Figure 6.23: A Patient Viewer page, allowing users to specify a patient ID to view.... 169

Figure 6.24: A Patient Viewer page .. 169

Figure 6.25: A workflow page .. 170

Introduction

11

Chapter 1. Introduction

The modern researcher makes extensive use of personal computers to do their work,

using both 'office' software and domain-specific programs. A growing number also use

remote computational resources to perform specialised tasks - from using a service

provided through a form on a website, to submitting jobs through the command line to

a Grid cluster.

Remote computational services offer many benefits: the end user does not need to deal

with installation, specialised hardware, administration or maintenance, or even

understand their details. Indeed, when the remote service being offered is resource

intensive, e.g. a large database, it would be quite impractical to install it locally on

every client machine. Remote services are thus economical, with a single installation

able to serve many users over a wide geographical area, allowing users to roam

between locations and computers without losing access to their data or software tools.

With broadband internet connections becoming ubiquitous even in the home, latency

and network bottlenecks have become less of a concern, except for services with high

data volume or extremely high demand.

The increasing use of remote services has highlighted the value of user-friendly

interfaces which reduce or eliminate the need for specialised training. One of the most

popular methods of accessing such services currently is through a web browser: many

users are both familiar and comfortable with existing web paradigms such as online

shopping and internet banking, both of which provide user-oriented and robust

interfaces to back-end systems. Acceptance of the web browser’s role in accessing

services in everyday life is increasing: for example according to one UK survey, 38% of

people were planning to do some of their 2005 Christmas shopping online, compared

to only 22% in 2001[156].

Introduction

12

In contrast, access to services for scientific research is regularly through remote shell

input or custom client programs (for example, MDL's CrossFire Commander

software[57] for querying the CrossFire Beilstein organic chemistry database[133]). It

remains to be seen to what extent these methods of access will be replaced by the web,

as the capabilities of a browser-based interface are generally inferior to those that can

be offered by a custom client program. Nevertheless, the process has already begun; to

continue the previous example, MDL has recently developed a rich web interface,

DiscoveryGate[58], as an alternative method of accessing the Beilstein database.

Web portals are sites which gather together many services, often on the same page, for

quick and convenient access. A typical portal today, such as My Yahoo[23], will offer

users a personalisable "home page" which can contain many fragments of content

(‘portlets’) showing for example news, entertainment, weather reports or stock quotes.

Portals are also used in business intranets, where they can offer consistent and

centralised access to business services, and more recently, business process

management[157]. However, the portal concept is also being applied in the scientific

research community, as project websites develop which provide access to the collection

of research data or services hosted by the project (e.g. the NIST Data Gateway[102],

which provides access to many of its scientific and technical databases through both

web interfaces and purchasable local software versions).

These research portals may be available to the public or only to authorised users, and

may be based on bespoke code or upon an existing 'portal' solution such as

GridSphere[78]. They may concentrate on providing access to services owned and

hosted by the organisation running the portal, or they may act more as a convenient

aggregation point, collecting or integrating interfaces to many remote third party

services (e.g. Indiana University's Bioinformatics Portal[90] which provides guidance

and services to its researchers, or BioTeam's iNquiry[127], a commercial system

combining a cluster and a portal for hosting and accessing in-house life science

services). In this thesis, we continue this progression and consider the potential of web

portals as the primary method of access to research services.

Introduction

13

1.1 Aims

The core of this thesis concerns the use of portlet technology in a web portal for

scientific research.

We address three main issues:

1. The requirements of a web portal intended for scientific research.

2. The suitability of the JSR-168 Portlet specification for research portals.

3. Methods for allowing interaction with research services through a web

interface.

We review the ways in which a web portal can be used to provide access to

computational services, and how this changes the research portal’s focus and

requirements compared to more traditional web portals. We illustrate these differences

with the design of a new portal for the Discovery Net[39,177] project at Imperial College

London.

We also assess the use of the JSR-168 Portlet Specification[16] for developing portal

components. We discuss the benefits and limitations of the standard, show how these

affect the design of portlets for research services, and provide alternative solutions and

workarounds where necessary. In particular, we present a portable, standards-

compliant library for inter-portlet communication (IPC), a practical solution to one of

the more significant (and internally acknowledged) omissions of the JSR-168

specification.

Finally, we introduce the problem of managing and presenting web interfaces to a

dynamic pool of research services, and outline Discovery Net's approach to the

specification and automatic generation of rich, user-friendly web interfaces. Discovery

Net provides tools to bring together the data and analysis components which make up

a larger task, describing the whole process as a "workflow". These workflows are the

research services, which can then be made accessible via the web.

Introduction

14

1.2 Main Contributions

1. Analysis of the requirements for a Research Portal, illustrated by our

development of Discovery Net portlets and their use in a number of demo

applications, most notably a Translational Medicine Portal.

2. Development of a JSR-168-compliant library for inter-portlet communication.

3. Evaluation of the strengths and weaknesses of JSR-168, resulting in advice and

solutions for portlet developers, and suggestions for the next portlet

specification, JSR-286.

1.3 Technology

The Discovery Net software is a server-client system for workflow editing and

execution (Chapter 2). Both server and client are built using Java J2EE[11], running on

JBoss Application Server 3.2.4[50]. The system has been commercialised by InforSense

Ltd. as InforSense KDE[97] ("Knowledge Discovery Environment"). The work described

in this thesis has been done using KDE versions from 1.9.2 (2003) through to 3.0 (2006).

Although this thesis will refer to "Discovery Net" software, this is usually

interchangeable with "InforSense KDE".

The new Discovery Net portal discussed in this thesis was developed using existing

JSR-168-compliant portal implementations. Early development used Apache Pluto[30],

which is part of the Apache Portals project, and is the reference implementation of the

Java Portlet Specification (JSR-168). For later development and final integration with

Discovery Net, Apache Jetspeed 1.6[28] was used. The selection of Jetspeed 1.6 from a

range of candidates is discussed in Chapter 3.

1.4 Thesis Structure

Chapter 1. Introduction: Introduction to the problem and an overview of the thesis.

Chapter 2. Background: Background information on e-Science and the Grid, web

services, Discovery Net, portals, portlets and virtual learning environments.

Introduction

15

Chapter 3. Analytical Portal Design: We discuss how the aims and thus technical

requirements of an Analytical or Research portal differ from those of a more traditional

portal. We apply this to the design of the Discovery Net Portal, and outline the process

of converting the existing Java servlet-based[13] portal to a Java portlet solution. We

compare several available portal implementations to determine which ones best fit our

needs, and end with a demonstration of a portal which combines third-party Oracle

Business Intelligence portlets with Discovery Net services.

Chapter 4. Web Interfaces to Research Services: We describe methods of dynamically-

generating web interfaces to remote services, and explain the benefits and problems

with these different approaches. Discovery Net's solution for "web deployment" of

workflows is described, including the process of encapsulating workflows, and the

necessity of providing feature-rich, customisable service interfaces to satisfy user

demands and expectations. We illustrate the possible variety of services using

Discovery Net’s demonstration scientific applications.

Chapter 5. Inter-Portlet Communication (IPC): We introduce the topic of IPC and

show how it is implemented in different portals. We then describe the design and

development of our JSR-168-compliant IPC library: one of the main contributions of

this thesis.

Chapter 6. Translational Medicine Portal: A Case Study of a Complex Portal: The

work on IPC and Discovery Net portlets is brought together with a real-world

example: a portal for translational medicine developed for the Windber Research

Institute.

Chapter 7. Limitations and Improvements for JSR-168/WSRP 1.0 Portlet technology:

As a result of our experiences, we discuss the limitations of using JSR-168 portlets, and

describe some solutions to common problems. Finally, we highlight a list of features

for consideration in the next portlet specification.

Chapter 8. Conclusion and Future Work.

Introduction

16

Appendices

A1. Retrieving a Portlet Window ID: Example code illustrating some of the methods

described in Chapter 7.

A2. Discovery Net Papers: We include for convenience some conference papers which

give further details on some of the projects discussed in this thesis.

1. Sensor Grids for Air Pollution Monitoring: A paper on Discovery Net’s GUSTO

scenario, from the All Hands Meeting 2004[152]

2. Distributed BioSensor systems for GM Crop Monitoring: A paper on Discovery

Net’s GM Crop scenario, from the All Hands Meeting 2004[169].

3. Adopting and Extending Portlet Technologies for e-Science Workflow Deployment: A

paper on the limitations of JSR-168 presented at the All Hands Meeting 2005[155].

Background

17

Chapter 2. Background

The continuing advances in computer technologies are having a profound impact on

the way people live their lives. In particular, the wide adoption of the internet and ever

increasing processing power have led to new ways of conducting business and doing

scientific research.

However, the demands we put upon computers easily keep pace with or exceed their

improving capabilities. The network infrastructure needs to support future data- and

processing-intensive experiments, for example the distribution, storage and analysis of

the data from the Large Hadron Collider at CERN, due to start up in 2007[79]. As data in

all scientific fields continues to accumulate rapidly, the methods for marking it up with

semantic metadata and searching through it will also become increasingly important,

hence work on the Semantic Web[144,175] and the Semantic Grid[128,130].

The initiative to develop internet technologies to satisfy this demand has been given

the name 'e-Science' in the UK[5], and the proposed architecture to support it is called

the Grid[141]. This includes everything from the mechanics of data storage and transfer,

security, computational cluster management and task submission, to semantic service

registration and discovery. "Web Services"[10] are one of the core technologies,

providing a standard, platform-neutral communication method between computer

systems using SOAP[17]. Our project, "Discovery Net"[39,177], is part of the UK e-Science

Programme[5] and has developed an infrastructure for scientific analysis focusing on

several research application demonstrations. The Discovery Net software allows

scientists to build and execute 'workflows', flexibly combining analysis and data

components to perform parameterisable tasks. This thesis concentrates on the ability to

'deploy' these workflows to the web, providing a user-friendly web interface to execute

the analysis workflow and inspect its results.

Background

18

Web interfaces are increasingly commonly used to access computational services. With

the Discovery Net system, we need to be able to provide access to a dynamic, ever-

growing pool of deployed services. Software for creating web portals (e.g. PHP-Nuke[4],

Apache Jetspeed[29]) provides a base for managing and presenting website content by

bringing multiple component portlets together to make up a single page. Portals can

allow users (as well as site administrators) to customise page layouts and modify

portlet preferences to fit their own interests. We will be considering the use of such

web portals as a solution for finding and accessing Discovery Net services, and

allowing users to personalise their pages for quick access to the services and data

which they use most frequently.

More detailed descriptions follow for each of these base technologies. A review of

specific methods for creating web interfaces to services is also given later, at the

beginning of Chapter 4.

2.1 Web Services

The term "Web Services" covers a range of open and platform-neutral standards

allowing direct communication between programs across a network.

Simple Object Access Protocol (SOAP)[17] is the communication protocol most often

used, and WSDL (Web Services Description Language)[6] is used for programmatic

description of the service interface. WSDL describes what functions are available to

call, and how to call them, but does not include semantic information to aid human

comprehension of what the parameters or methods are for. Web services can be

indexed and found using registries based on the UDDI (Universal Description,

Discovery, and Integration)[9] standard from OASIS (Organization for the

Advancement of Structured Information Standards).

Further advanced standards and specifications build upon this base, for example

extended descriptions of service interfaces can be written using languages such as

OWL-S[19] (previously DAML-S), a web service ontology based upon OWL (Web

Ontology Language), and security can be added using the OASIS standard WS-

Security[113].

Background

19

These common, XML-based standards allow flexible integration of web services into

existing systems, reducing the technical effort required both in programming access to

web services and in supporting heterogeneous platforms (many code libraries are

available, e.g. Apache Axis[8] for Java and C++, and SOAP::Lite[18] for Perl, while there is

integral support in Microsoft's .NET with ASP.NET web services[34]). Current and

legacy systems can also be wrapped, exposing them for easy access through web

service interfaces.

Web services have been adopted by many communities in recent years, in particular in

business and research, to provide various forms of remote functionality such as

database access, submitting data, and computational services.

2.2 e-Science and the Grid

"e-Science is about global collaboration in key areas of science, and the next generation

of infrastructure that will enable it." - John Taylor, Director General of the Research

Councils, OST (CCLRC e-Science Centre)[36]

The infrastructure for e-Science (the Grid) will allow scientists anywhere in the world

to access and store terabytes of data, control remote instruments, perform processing-

intensive distributed analysis and data mining, use and combine remote services, and

interact with colleagues using shared visualisations. For practical use and widespread

adoption, the technology must also provide secure, manageable, auditable and

dependable access to resources.

Grid middleware is software which smoothes over the heterogeneity in these large

scale systems, e.g. in terms of hardware, network protocols and security systems,

providing a standardised interface to the users. The de facto standard middleware is the

Globus Toolkit[139], developed by the Globus Alliance[110]. Globus provides resource and

information management, job execution and monitoring, and security. Another

commonly used piece of software is Condor[91], a cycle-stealing distributed execution

environment which can be used in combination with Globus to manage jobs. Sun's N1

Grid Engine (formerly Sun Grid Engine)[109] is another cluster/job management engine.

Background

20

The Globus Toolkit version 3 introduced the Open Grid Services Infrastructure

(OGSI)[140], which presents grid resources as services using an adaptation of the Web

Services model. Grid services may be persistent or transient (created on demand by

service factories), and as each user of the service is likely to be accessing their own

personal instance of the service, grid services maintain state information. Globus, IBM

and HP then developed the Web Service Resource Framework (WSRF)[145,150], which

takes many of the concepts and structures from OGSI and applies them as new layers

of the web services infrastructure, effectively providing stateful web services by using

'resource' web services to hold data. These new layers[25] make use of the WS-

Addressing[111] specification for addressing messages to web services, and include:

• WS-Notification for publication of messages, subscription, and triggers.

• WS-ResourceProperties for storage, update and retrieval of service data.

• WS-ResourceLifetime for management of resources.

WSRF is used instead of OGSI in version 4 of the Globus Toolkit[139] (April 2005).

2.3 Discovery Net

Discovery Net[39,125,177] is a workflow-based grid computing platform developed at

Imperial College London, and commercialised by InforSense Ltd. as InforSense KDE

(Knowledge Discovery Environment)[97]. It provides user-friendly access to data pre-

processing, analysis and mining components (Figure 2.1), allowing scientists to build

and execute reusable workflows for data mining and decision support. It also provides

a range of visualisers for inspecting data. New components can be written in Java and

plugged in to provide custom domain functionality.

Discovery Net uses a standalone server which manages data storage and workflow

execution. The Discovery Net Java Client can be installed on user machines, or

launched across the network using Java Web Start[48], and provides a user interface for

accessing the userspace (file storage area), and editing and executing workflows

(Figure 2.2). Discovery Net workflows may alternatively be accessed as web services,

through custom APIs, or through the Discovery Net Web Portal (which is based on

Java Servlets, which are described in Section 2.4).

Background

21

Figure 2.1: Discovery Net software, based upon Inforsense KDE, in use. The

environment provides per-user file management (top left), analysis components

(bottom left), and workflow composition and execution (right).

Discovery Net

Client / Server

Scientific Data
Files

Databases

Instrument Data

Applications
KDE components

Custom programs

Web/Grid Services

Workflows
Authoring

Storage

Execution
Result Storage

Work history

Visualisations

Deployment
Web Interface

Web Services

3
rd
 party access

Figure 2.2: Overview of Discovery Net functionality

Background

22

Discovery Net demonstrates its grid-based data mining platform with respect to a

particular set of testbed applications, in collaboration with a number of other research

groups in Imperial and companies. These applications are further discussed in Chapter

4.

2.4 Java Servlets and JSP

Java Servlet[13] and JSP (Java Server Pages)[12] technology allows web developers to

create 'active' or server-generated web pages in a similar way to that allowed by other

web server technologies like Perl, PHP and ASP. The Java base allows for easy

integration with existing J2EE components and the use of any Java libraries. Servlets

are compiled Java classes which receive requests from a client (usually a web browser)

and generate and send a response (the HTML contents of the web page). JSPs allow

developers to use a hybrid syntax where HTML may be mixed with Java code or

special 'tags', and are compiled on-the-fly to a servlet by the server upon receiving a

request. In development, JSPs are closer to scripting languages like PHP, and are well-

suited for modification by non-coders (e.g. the style-designers of a page).

Servlets are a well-established technology, and there are many libraries and tools

available to make life easier for servlet developers. For example, when developing a

servlet page, the servlet code is often split up into multiple parts: first, the request is

processed by the servlet, which does any intensive processing (business methods) and

data retrieval, and is then passed on to a JSP, which is lightweight and serves mainly to

generate the page layout and display the data. This adoption of the Model-View-

Controller pattern[3] is commonly seen, and there are a number of toolkits available to

allow such structured code design over an entire site, as well as to simplify and

standardise universal requirements such as processing input forms and dealing with

page flows (e.g. Apache Struts[32], JavaServer Faces[22], Jakarta Tapestry[47]).

A web site will be typically made up of a collection of servlets, JSPs, and static

resources such as HTML files, images, and other binary files such as Adobe PDFs.

Often it will also access a separately-managed database for dynamic information. The

collection of resources - servlets, JSPs and other files, but not the database - will be

Background

23

gathered together in a common location as a named web application (often abbreviated

to webapp) on the J2EE server. A single server may host many web applications, and

ensures that each operates without interfering with the others - this allows new

webapps to be added in without affecting existing ones, so that one server can host

many sites ('applications'), e.g. at a web hosting company. Thus, a webapp is typically

self-contained, and interaction or communication between webapps is not usually

expected or encouraged. As we will see however, the portlet model challenges this

convention.

2.5 Virtual Learning/Research Environments

One of Discovery Net's aims is to provide a common environment for performing and

sharing the results of research within a "virtual organisation", with an emphasis on

ease of use and collaborative work. This is a growing field which is often referred to as

"Virtual Research Environments" (VREs) or "Virtual Learning Environments" (VLEs).

End-users typically interact with the VRE through a web portal. This topic has been the

subject of several recent research programs and workshops, many of which supply

useful summaries and examples of projects in the field (e.g. from JISC[20,126,164,166], UK e-

Science[153,165] and GGF[129,135]).

There are a number of projects aiming to provide software solutions - usually

implemented as academic web portals, for easy access by students and researchers.

While the interfaces and presentation chosen vary, these projects have the common

theme of trying to make the use and management of distributed, shared resources as

transparent and intuitive to use as possible. They also usually include collaboration

tools such as forums and chat systems. There is an overlap in functionality between

VREs and VLEs: the latter additionally include modules for course content

management and publication, and other course-related features such as online tests,

timetables and coursework submission systems. However, the research aspect of

providing access to computational services is less well supported by generic tools,

typically requiring custom programming for each institution.

WebCT[85] is an example of a commercial web portal used in educational environments.

JA-SIG's uPortal[83] provides a higher-education-focused, JSR-168-compliant portal

Background

24

solution, which has the advantage that third party portlets - for example Grid portlets

from the NMI's Open Grid Computing Environments (OGCE) project[63], or indeed

Discovery Net portlets - can be plugged into the provided portal with minimal effort.

Others, such as Groove Virtual Office[45] (recently acquired by Microsoft) and

GRENADE[154] (a grid-enabled Linux KDE desktop), are focusing on tearing down the

basic user perception of grid resources as being remote and requiring special client

software or web portals to access: instead they provide access to remote data and

services by "grid-enabling" the existing desktop environment.

There are many real-world education and research portals in use, both project

demonstrators and production portals. The UK’s National Grid Service[100] (NGS)

allows access to its computational and data services through a web portal running the

JSR-168-compliant Stringbeans portal[76]. An alternative portal[104] to the NGS, using the

P-GRADE Grid portal[103], provides more advanced tools for job submission and

management, again based on JSR-168. The European INFN Production Grid[96], used by

several international physics projects, also has a user-friendly portal interface, the

GENIUS Grid portal[95,167], which uses a custom architecture with specialised layers to

support different projects. On a smaller scale, but perhaps the most similar to

Discovery Net’s approach as described in this thesis, the myGrid project portal[172]

allows users to parameterise and execute workflows and visualise the results, and is

built with JSR-168 portlets in GridSphere[78].

2.6 Portals and Portlets

Various forms of ‘portal’ and website management software emerged early in the

development of the Web to meet common requirements of website developers, and the

general portal concept is referred to by many names. The use of pre-built software

allows developers to get a basic site skeleton up and running quickly. Portals provide a

framework allowing modularisation of website content, and the addition of common

site functionality such as forums or polls as downloadable components. The structure

introduced by the portal makes it easier for multiple developers to work on a large site,

and helps in long-term maintenance and updates. The portal software usually also

provides site-wide services such as content/page management, user management and

Background

25

security, saving further development time. PHPNuke[4] and PostNuke[70] are examples

of commonly-used portals, particularly for small or enthusiast sites. In contrast high-

profile sites such as BBC News[88] or Amazon[87] tend to use their own in-house

implementations, which still share many features with typical portals, such as the

visible modularity in their page designs. News and weblog systems (e.g. Moveable

Type[60], Slashcode[73]) are types of cut-down portals which include content

management features, specialised for their particular purposes and generally requiring

very little configuration to produce a working site. Advanced Content Management

Systems such as Typo3[82] can also offer many of the same portal features. In business,

"Enterprise Information Portals" - often heavyweight commercial solutions such as

Oracle Portal[66] or IBM WebSphere[46] - are used to provide employees with access to

information and for direct integration with business process management systems.

In portal terminology, portlets are the code modules which are usually presented to the

user as boxes on a web page (Figure 2.3). The content of a portlet usually corresponds

to a service or a piece of information which would traditionally have been presented

on a single web page, but by 'wrapping' this information or service as a portlet, it can

be displayed simultaneously with other portlets on the same page. The page layout

may be determined by an administrator or individual user. Thus a single Portal web

page may (and probably will) contain many portlets, and/or multiple instances of the

same portlet, which may be completely independent or interoperate with each other.

Background

26

Figure 2.3: "My Yahoo" (2004) is a user-customisable portal with many available

portlets including headlines, weather, calendar, movies and TV listings.

Background

27

2.6.1 Portlet Standards

From 2000 onwards, portals became popular for use in company intranets, acting as a

central point for aggregation of information, communication, and integration of

business services. Many companies, including IBM, Oracle, Microsoft, Plumtree,

Vignette, SAP and BEA offered their own ‘Enterprise’ portal software, providing

similar features but with proprietary APIs for portal and portlet development. Thus,

portlets developed for one portal would have to be rewritten if it was later decided to

migrate to another system.

The Java portlet standard, JSR-168[16] (released in October 2003), was defined with the

aim that developers could write reusable Java portlets that could be used in any

standard-compliant Portal server. This would lessen the cost of moving to a different

Portal implementation, and also allow generic portlets (e.g. a webmail, chat or forum

portlet) to be developed once and then used on any portal. JSR-168 standardises

features which were already common in many pre-existing portals, but cannot include

every feature that these portals offered. This may have been one reason for the

relatively slow release of JSR-168 compliant versions of the more established portals;

however by the end of 2005, most current versions of the portals mentioned included

JSR-168 support, with the notable exception of Microsoft SharePoint Portal Server[59].

JSR-168 specifies a standard way for programming portlets in Java. The WSRP (Web

Services for Remote Portlets) standard[14], approved as an OASIS standard in August

2003, complements JSR-168: it defines web service interfaces so that a portlet may be

implemented as a web service which a compliant portal server can access. A WSRP

portlet may thus be remote from the portal server using it, and may be written in any

programming language. WSRP's goal is to allow interaction with presentation-

oriented, interactive web services: i.e. web services which provide their own human-

oriented user interface (the visible portlet). WSRP portlets and JSR-168 portlets

effectively offer the same features; JSR-168 may be seen as a Java-specific

implementation of WSRP features. Some portals, such as Oracle Portal, in fact support

only WSRP portlets, but also provide internal tools to wrap and expose JSR-168

portlets as WSRP web services. Figure 2.4 gives an overview of this architecture.

Background

28

Figure 2.4: Portal architecture overview.

Background

29

2.6.1.1 Java Portlet Standard (JSR-168)

JSR-168 portals are implemented as Java web applications, hosted on Java application

servers (servlet containers) such as Apache Tomcat[33] or JBoss Application Server[50].

JSR-168 portlets are typically placed in their own web applications ("portlet

applications"), with a portlet deployment descriptor file portlet.xml which provides

an index of the available portlets. The portal application thus needs to be able to

inspect and access the other web applications on the same server which contain

portlets, and this is usually effected as part of an initial portal-specific deployment

process for each portlet application (e.g. by inserting a servlet from the portal in each

portlet application).

In JSR-168, the functionality of a portal is abstracted into the portlet container and the

portal server (Figure 2.4). The portlet container manages the portlets using the interfaces

defined in JSR-168, and makes them available to the portal server. The portal server

provides the actual implementation of portal features and services such as page

aggregation, user management and preference storage, which is outside the scope of

JSR-168 and therefore may be differently implemented in different portals.

Apache Pluto[30] is the JSR-168 reference implementation of a portlet container, and also

includes a portal server with minimal features (intended for testing, not production

use). Other JSR-168/WSRP portals include Apache Jetspeed 1.6[28], Jetspeed 2[29],

Stringbeans[76], eXo[41], Liferay[52], GridSphere[78], JBoss Portal[51], IBM WebSphere[46], and

Oracle Portal[66].

Figure 2.5 shows the terminology used in JSR-168 to describe the components of a

portal page. A portlet window is a particular instantiation of a portlet defined in the

portlet deployment descriptor. Multiple portlet windows may be based upon the same

portlet entry in the portlet.xml . Usually, each portlet window is treated as an

independent module, and has its own private scope in the user session (referred to as

the “Portlet scope”) to save data. Each portlet window is responsible for generating its

own fragment of the page, and the portal deals with aggregation and layout of the

fragments, delivering the final page to the user's browser.

Background

30

Figure 2.5: Diagram from JSR-168 specification[16] (Figure 4-1 “Elements of a

Portal Page”)

Portlets within the same portlet application can share data using the "Application

scope” of the user session. Portlets in different portlet applications cannot

communicate easily, and so it is generally recommended that related portlets are

packaged in the same application.

The Model-View-Controller architecture[3] is commonly used in web applications to

separate the data model, the active control code, and the page display code. JSR-168

defines the portlet lifecycle in a way to explicitly support and encourage this coding

practice. When a user clicks on a link in a portlet, or submits a form, the browser sends

a new request to the portal. The portal examines the request, which may be one of two

types: a Render request or an Action request. If it is an Action request, the portal sets off

the originating portlet's Action phase, invoking the portlet's processAction method,

and once that has completed, it sets off (possibly in parallel, using threads) the Render

phase of all portlets on the current page, to generate portlet display fragments

(invoking their render methods). The portal gathers together these fragments to make

Background

31

up the whole page, and sends the response back to the client browser, which displays it

to the user (Figure 2.6). Thus, the originating portlet has a chance to perform

operations and change portlet state in the Action phase, before the Render phase

occurs. On the other hand, if the incoming request is a Render request, the Action

phase is bypassed and the portal simply re-renders all the portlets on the page.

There are several further differences in developing portlets when compared with Java

servlets, as there are some things that must be delegated to the portal. Stefan Hepper's

"Best Practices" document[173] describes these well. For example, on a normal dynamic

web site, a user may click on a link or form button which sends query parameters to the

target page (e.g. in the URL http://www.google.co.uk/search?q=portlets , the

query parameter ‘q’ is sent with the value ‘portlets’), which will be picked up and acted

upon by the page when it re-renders. A portlet uses a similar approach, but must

delegate the generation of the target URL to the portal, so that the portal can encode

the query parameters alongside other information relating to page state and other

portlets. As part of this delegation, the portlet is also able to specify whether the target

URL should result in an Action or a Render request. When the portlet window re-

renders, the portal will ensure that the portlet window’s own query parameters from

the target URL are made available to it. The portal also provides access to portlet

features and services, such as a method to retrieve the portlet instance's initialisation

parameters (which are specified in the portlet.xml).

One particularly useful service provided to portlets is portlet preferences. These are user-

specific settings for a portlet window that are persisted by the portal across browser

sessions. By editing their preferences, a user can personalise a portlet on their version

of the home page - for example, setting a home town for a Weather portlet. The method

of persistence (e.g. file store, database) is dependent on the portal implementation and

is often configurable by the portal administrator; JSR-168 provides a simple API

allowing portlet code to save and retrieve preferences, which is independent of the

actual persistence method used.

Background

32

Figure 2.6: Example portal page request sequence. A user first visits a portal

page, sending a Render request to the portal. Next, they submit a form from one

of the portlets displayed. The portal processes the resulting Action request, first

allowing the targeted portlet to process the form submission, then re-rendering

the page with all its portlets to return to the user.

Background

33

JSR-168 does not dictate the method of page management, layout or aggregation - that

is left to the implementers of the portal server to decide. Portals always provide some

way of creating new pages without code, but the exact method varies from editing

XML configuration files to drag-and-drop graphical web interfaces on the running

portal itself. Certain aspects of the portlet rendering process are mentioned in JSR-168

but are optional - such as caching, or parallel (multi-threaded) rendering of portlet

windows.

Some features such as inter-portlet communication and portlet filters (which would

provide similar functionality to servlet filters[13]) were left out of JSR-168, although they

are often available in other Portal implementations. The limitations of the JSR-168

specification are discussed in detail in Chapter 7.

2.6.1.2 Web Services for Remote Portlets (WSRP)

As discussed earlier, the OASIS standard Web Services for Remote Portlets (WSRP)[14]

is a parallel specification to JSR-168 which defines a way of accessing a portlet through

web services. In WSRP terminology, the host of the WSRP web services is the Provider,

and the direct user of the web services is the Consumer. Thus in the context of WSRP,

the Consumer is the portal server - not the browser client or the human end user.

A WSRP Provider may host any number of WSRP portlets. A portal which supports

WSRP acts as translator, aggregator, and middle-man, accessing the remote WSRP

Provider to retrieve GUI fragments for presentation to the user, and then returning the

user's response to the WSRP Provider for processing. As web services use language-

independent protocols, WSRP portlets can be implemented in programming languages

other than Java, as long as they are accessible through a WSRP interface. Some JSR-168

portals additionally provide WSRP export of their hosted JSR-168 portlets, so a Java

JSR-168 � WSRP conversion is generally quite easy (this is necessary for portals which

have WSRP, but not direct JSR-168 support). Thus, through WSRP, a standard

mechanism exists for providing platform-neutral web service (portlet) GUIs to remote

Consumers (portals).

Background

34

2.6.1.3 The relationship between JSR-168 Portlets and Java Servlets

JSR-168 portlets are very similar to servlets, but differ in numerous small and

significant ways[173]. A portlet can perhaps be considered as a version of a servlet that

has been modified to permit modularisation and aggregation of multiple portlets on a

page; to do this, some new features have been added and some existing ones removed.

Many of the servlet API interfaces and classes have portlet equivalents: e.g. instead of

doGet and doPost , portlets use render and processAction ; instead of an

HttpSession , portlets have a PortletSession ; the PortletRequest and

PortletResponse interfaces closely mimic the HttpServletRequest and

HttpServletResponse . However the Portlet versions of servlet classes do not actually

inherit from or implement the Servlet classes or interfaces.

Portlets are deployed to a servlet container or J2EE server in a web application with an

additional configuration file: the portlet deployment descriptor portlet.xml , which

lists and parameterises the available portlets. A single such "portlet application" may

contain any number of portlets, and indeed any portlets which are intended to work

together should be packaged together in the same portlet app. A portlet application

can contain all the types of resources found in a normal web application, and portlets

should be able to make use of these resources (files, servlets, JSPs). The specific

procedure for installing portlets to a given portal may vary, but in the end - perhaps

after the portal has checked and tweaked some configuration files - the portlet

application will be deployed as a webapp.

A portlet is frequently viewed as a mini-application in its own right. It therefore

requires some degree of insulation from the other portlets in the same application, or

on the same page. One way in which the portlet specification supports this is by

extending the existing servlet concept of the session, splitting the PortletSession into

two scopes: the PORTLET_SCOPE session, which is only visible to that portlet instance,

and the APPLICATION_SCOPE session, which is visible to all portlets in the same portlet

application (Figure 2.7). The portal also scopes portlet 'render' attributes (values which

are to be passed on from the portlet request-processing code to an included JSP for

display), so that a render attribute set by one portlet on a page is only seen by its own

included JSPs, and not by the JSPs of other portlets on the page.

Background

35

Servlet Container

/jetspeed

/forum_portlets

/shop_portlets

Web Applications Sessions

Portal Session

Forum portlets’

session

Shop portlets’

session

Forum portlet app’s session

Shop portlet app’s session

PORTLET

SCOPE

session for

each portlet

PORTLET

SCOPE

session for

each portlet

APPLICATION

SCOPE

session

APPLICATION

SCOPE

session

Figure 2.7: Portlet applications, and the Portal itself (here, Jetspeed Portal), are

all deployed as web applications in a servlet container. A portlet application

may contain many portlets. Each portlet has its own private session area, but

can also access a shared session area visible to all portlets in the same

application.

Thus, developing a Portlet is a similar, but somewhat different and parallel, procedure

to developing a servlet. A portlet application is an enhanced webapp which may

include both portlets and servlets, and portlets can - and often do - make use of

servlets, most commonly for generating images or serving other binary files to the user.

Background

36

The Portal itself is also deployed in its own webapp in the servlet container. As noted

before, webapps are kept separate by the servlet container, and this must be worked

around by the Portal which needs to be able to access portlets in their own webapps.

As a result there is usually some extra configuration involved in registering a new

portlet application with a Portal - and often a requirement to put Portal libraries in a

common/shared directory on the server.

A full Portal deployment therefore includes a single Portal webapp plus any number of

portlet webapps, each of which contain one or more portlets (Figure 2.8).

Figure 2.8: Example directory tree showing the location of the portal and

portlets.

Background

37

2.6.1.4 Future Portlet Standards

The next versions of both the Java portlet standard and WSRP are under development.

The Portlet Specification 2.0 is being developed as JSR-286[106]; the expert group was

formed in December 2005 and as of July 2007 has reached the Public Review stage.

WSRP 2.0[14] has been in development since late 2004; it aims to coordinate with JSR-

286, and will also soon begin its Public Review stage.

2.7 Conclusion

This chapter has introduced the main technologies used for providing computational

Web and Grid services and for developing web portals. Following an overview of

portal usage, we have described the features of the current Portlet Standard (JSR-168)

and the Web Services for Remote Portlets (WSRP) v1.0 specification. This provides a

basis for discussing the design and development of analytical portals using JSR-168

portlets in the following chapters.

Analytical Portal Design

38

Chapter 3. Analytical Portal Design

In this chapter we consider the use of a "web portal" as an interface for interactive

analytics, allowing users to visualise data and perform analysis using remote services.

We discuss how the Discovery Net web portal was developed as a set of interacting

portlets, and how our style of implementation and usage scenarios affected our choice

of portal implementation. Finally, we present a concrete example illustrating the points

made in this chapter: a demonstration of a retail portal built using a combination of

Oracle and Discovery Net portlets.

3.1 General advantages of Web Portals

A website typically contains multiple sections, each providing different information or

tools to the end user. Modularising the back-end code makes it easier for a developer to

concentrate on one aspect of the site, allowing multiple developers to work on different

sections simultaneously, and reducing the learning curve for new developers.

Modularisation encourages a design where the different modules are, if not completely

independent, only loosely coupled, so that changes to one module have minimal

impact (requiring updates or fixes) on other parts of the site.

Using portal software as the framework for a website aids and encourages such modular

design, by providing a structure and interfaces to which modules can be developed,

plugged in, and aggregated into web pages. As discussed in the Introduction, there are

many portal implementations available, using a variety of approaches and back-end

technologies (e.g. Perl[81], PHP[69], ASP[34], Java Servlets[13]), and the Java Portlet

specification (JSR-168)[16] is a relative newcomer in the portal crowd. As many of the

older Java portals (such as IBM WebSphere[46] and Oracle Portal[66]) offer a more

extensive feature set, JSR-168's main attraction is that it is an established Java standard.

Analytical Portal Design

39

This promises that JSR-168 portlets (the web modules) will be portable between

different JSR-168 portal implementations, and provides some assurance that support

will continue for several years in the future. Also, the fact that the technology used is

Java will allow easy integration with existing applications based upon J2EE[11].

The JSR-168 community is an active one[114,161,49]. Since the specification's final release in

October 2003, many JSR-168-compliant portals have appeared, varying from barebones

open-source (e.g. Apache Pluto[30]) to full-featured, heavyweight commercial offerings

(e.g. Oracle Portal). Website developers also have the option of importing existing

third-party portlets to add functionality with minimal development effort. A small

number of third-party JSR-168 portlets[15,42,99] are available for free or to purchase (e.g.

for integrating news, forums or email to a portal) and most portal implementations

also bundle their own selection of portlets which may be used or ignored as the site

developer chooses.

A Portal typically provides a number of services which can save considerable

development effort. Most importantly, the portal will provide a mechanism for

constructing web pages by aggregating portlets. This is of course a critical feature of

the portal, but the separation of page layout and navigation from the development of

portlets also allows further division of responsibilities within a large web team. The

method of constructing pages is different in each portal, from manually editing

configuration files before the server is started, through to a drag-and-drop GUI on the

portal itself at runtime. A strong driver for using portals is personalisation of pages,

usually by allowing users to modify which portlets appear on their "home page", and

to configure them with custom settings. Further, some sites may allow users to create

their own new pages, effectively building their own sub-site using the portlets

provided. Portals which allow users to personalise their pages must usually include a

user system, which may also include a Roles or Groups model. User management and

role-based access to protected pages or portlets may therefore also be counted among

the services potentially provided by the Portal.

Analytical Portal Design

40

In summary, the key benefits from using a Portal, and in particular JSR-168, are:

• Modularisation of website content; separation of site structural design from

portlet development

• Generic services provided and managed by the Portal, e.g. security, user

management, page management

• Ability to host portlets in any JSR-168-supporting Portal

o Choice of Portal implementation

o Easily share portlets for hosting in other portals

o Easily plug-in 3rd-party JSR-168 portlets

However, as will be described in detail in Chapter 7, there are several limitations

involved in developing JSR-168 portlets. Many of these issues have workarounds (of

varying effectiveness), which are also discussed in that chapter.

The next version of the portlet specification (JSR-286) is currently in progress; this

continuing development, building upon JSR-168, should act as a further

encouragement to support the JSR-168 standard for developers of both portlets and

portals, as later migration of code from JSR-168 to JSR-286 is likely to be easier than

migration from a proprietary portlet interface. The new standard will address many of

the features lacking from the original specification, and hopefully also some of the

additional limitations described later.

3.2 Requirements of an Analytical Portal

Most web portals today focus on presenting information to the end user. While many

also provide interactive features such as facilities for users to contribute content (e.g.

through polls, comments, reviews, forums), or initiate business processes (most

commonly, buying from a shop), the core requirement is still the provision of

information. Thus "Content Management Systems" (CMS) have been developed for the

storage, maintenance, aggregation and presentation of information. CMSs often

include standalone client applications for performing administrative tasks, although

some (e.g. Typo3[82]) have implemented these as web-based applications. An alternative

approach for managing content is through wiki software[112], which allow web-based

Analytical Portal Design

41

content editing, potentially by any user of the site. Many Portal solutions provide ways

of embedding both existing CMSs and wikis.

In contrast to other portals, the focus of analytical portals is to provide a wide variety

of rich web interfaces to an ever-changing pool of available services, making use of at

least one robust back-end system for managing service execution (Table 3.1). Data

management is also a required capability, but this time from the point of view of using

data as input to services and storing/accessing service results, and the portal may

delegate this function to the back-end analysis engine. Conventional content

management, for managing the content of static pages on the site, is still necessary but

can be assumed to be a standard service that will be available in most modern portals.

A common feature in portals is a web-based front end for managing and composing

portal pages. This is typically mainly used by the portal administrator for creating the

static parts of a website. However, analytical portals can make greater use of this

feature by additionally allowing their users to create their own personalised sub-sites

(of multiple pages) using the different analysis portlets provided by the portal. There

may also be an intermediate level of users or administrators who can create 'group' or

'role'-based pages which are available to a group of users (e.g. all participants in a

particular project).

Therefore, we envision an analytical portal which does not need to provide a pre-

designed website with custom pages for every possible tool (and associated

navigational systems), but instead can allow users to build their own version of the

site, focusing on providing a library of functional portlets which each user can combine

and personalise in the way most useful to them. The personalised page creation system

thus gains greater significance for analytical portals than in other portals, becoming a

core part of how the portal is used, rather than a peripheral gimmick.

Analytical Portal Design

42

Traditional Portal

Analytical Portal

Focus on providing information
 Focus on providing data and

interactive analysis tools

Document management and

presentation

 Data storage and provision,

Application hosting and execution

Static page/site design
 User-customisable page contents

User-created new pages

Design main features from the

beginning, and launch completed

site

Hosted applications may be

changed and added to at any time

Limited/controlled user-generated

content, e.g. forums, comments

 High proportion of user generated

content, up to and including the

analysis applications themselves.

Table 3.1: Feature Comparison of Traditional and Analytical Portals.

3.3 Functional requirements for the Discovery Net Portal

Our concrete example of an analytical portal is the Web Portal for Discovery Net's data

mining engine, which executes Discovery Net workflows.

The web portal needs to provide access to a subset of Discovery Net's features:

primarily, it must provide a web interface to parameterise workflows and submit them

for execution. It does not need to include full workflow editing capabilities, which is

already catered for by the Discovery Net Java client.

The features which must be provided by the Discovery Net web portal are:

• Discovery Net Userspace

o data storage, management and retrieval

• Discovery Net Services (deployed workflows)

Analytical Portal Design

43

o inspection of service metadata and workflow details

o parameterisation through a user-friendly web form (including use of

applets for inputting special types of parameters, e.g. molecule sketch)

o ability to save/load 'bookmarks' of frequently used parameter settings

o execution through the web form

o task monitoring and management

o display and storage of service results

o ability to pass on a service result from one service as an input to another

• Discovery Net Server Administrative functions

• Help pages

In addition, related to the Portal implementation:

• A web-based interface for creating new portal pages is essential so that users

can create their own personalised pages.

3.4 Non-functional requirements for the Discovery Net Portal

Usability: Users should be able to discover how to manage data in their userspace, and

parameterise and execute deployed services, with no or minimal training required.

Some training or documentation may be necessary to enable users to create their own

personalised pages.

Error handling: Errors resulting from service execution must be reported in sufficient

detail for the user to understand what went wrong (whenever possible).

Security: Users must log in to the portal before accessing any Discovery Net userspace

or service functionality. Roles must be used to determine which parts of the userspace

and which services are accessible to different users.

User/Role Management: The portal’s user system must be integrated with Discovery

Net’s user/group system, so that the two user registries do not need to be manually

synchronised.

Analytical Portal Design

44

Robustness: The portal runs on the same application server as the main Discovery Net

engine, and so must be robust enough in operation to survive weeks and months of

continual uptime. Resources must be managed and released efficiently.

Internationalisation: It must be possible to fully internationalise the portal pages.

3.5 Discovery Net portlets

The original Discovery Net web portal already provides access to most of the required

features, as a fixed set of web pages using servlets organised with Apache Struts[32].

However, sites based upon this architecture are not well suited to conversion to

portlets, except as a monolithic whole; an entire site can be embedded into a page

using an IFRAME, or utilities such as the Apache Portals' Struts Bridge[31] can wrap an

existing Struts application as a single portlet. These approaches are suitable for quickly

integrating an existing application into a portal site - particularly when there are many

such applications to convert.

However, we wanted to split up the different types of Discovery Net functionality into

separate portlets, taking advantage of their component-like nature to provide users

with new ways of accessing Discovery Net services. Of particular interest was the new

possibility of having multiple services on the same page, and allowing results to be

passed from one service as input to the next.

Therefore the first priority was in identifying suitable portlets: sections of functionality

which were loosely coupled and reusable. These broadly correspond to the pages in

the original web portal, but some aspects (such as the different userspace functions)

have been split up further, for clearer control of dependencies between portlets, and

flexibility in arranging page content.

Analytical Portal Design

45

3.5.1 The Service Portlet

This portlet is the key to providing the Analytical Portal. It displays a service form

interface for a selected service instance, allowing the user to parameterise it, submit it

for execution, and view the results (Figure 3.1). The selected portlet is discovered either

from an input message from another portlet (e.g. the Service Index portlet), or from

explicit configuration by the user in this portlet's Edit mode. Such direct configuration

to select a service is saved in the user's preferences for that portlet window, so the

portlet will continue to display the selected service on future visits. Multiple Service

portlets can thus be added to pages and separately configured to create personalised

'dashboards'.

Figure 3.1: Service Portlet. In the default layout, the parameters are input on

the left and the result shown on the right.

Analytical Portal Design

46

Service 'bookmarks' of a service's frequently used parameter settings can be both saved

and loaded. Service bookmarks are stored as files in the userspace, so can be shared

with other users simply by moving them to a shared userspace directory.

The portlet also allows the user to view details of the underlying workflow. This has

the same effect as viewing the service in the Userspace Item Viewer portlet (Section

3.5.2.4).

Finally, the advanced user can configure the portlet to pass on the result(s) of the

service to be used as input parameters in another Service portlet. This is implemented

using the IPC library and is configurable in the portlet's Edit mode.

The design of this portlet is key to the flexibility of our analysis portal. A single Service

portlet implementation acts as the interface to any deployed Discovery Net service

(Figure 3.2). This is in contrast to the more common approach of providing a bespoke

web interface - either with static web pages or a custom portlet - for each service. This

usual approach has the disadvantages of low flexibility and extremely high

maintenance on the part of the portlet developer (who has to create a custom interface

for each service) and for the portal server administrator (who has to install the new

pages/portlets, and keep them accessible and up to date as the pool of available

services changes). It does however allow for completely customised web interfaces, as

each can be hand-tailored to the service's requirements, both in inputting parameters

and the treatment of results.

On the other hand, our approach of using a single Service portlet does not require any

ongoing maintenance or manual intervention by either the portlet developer or the

portal administrator, as the portlet can show any Service without further custom

programming, and is always up-to-date with the list of services available. This is made

possible by introducing standard ways of describing web interfaces to Discovery Net

services, which the Service portlet can then transform to generate the final HTML code.

We discuss this approach to the problem of dynamically generating rich, user-friendly

service interfaces in Chapter 4.

Analytical Portal Design

47

Figure 3.2: Discovery Net Portal architecture. A single Discovery Net Service

portlet can be configured to provide an interface for any Service (deployed

workflow) on the Discovery Net Server. The Service workflow may access any

computational resource, such as Grid Services, clusters or databases.

Analytical Portal Design

48

3.5.2 Supporting Portlets

3.5.2.1 Service Index Portlet

This portlet lists the deployed Discovery Net services available to the current user

(Figure 3.3), and allows the user to select a service for use in other portlets..

The services are grouped by location in the userspace. In future, they might

alternatively be sorted or searched using service metadata, but such metadata is not

currently available.

By default, all visible services are shown. The portlet can be configured in edit mode to

show only services under a specified directory, which is helpful when building focused

portal pages for particular projects.

For a selected service to be parameterised and executed, a temporary (per web session)

service instance must first be created. This service instance is used to maintain state on

the server, including caching of intermediate results. Thus the Service Index portlet

creates a new instance of the requested service and then publishes a message for other

portlets identifying the selected service instance. Later, whenever the service index is

re-rendered, it will also indicate the existence of service instances alongside their

parent service - these instances may from then on also be directly selected for use in

other portlets.

Analytical Portal Design

49

Figure 3.3: Service Index Portlet, showing available services with their

corresponding instances in the current user session.

Analytical Portal Design

50

3.5.2.2 Tasks Portlet

This portlet displays lists of running and completed tasks (Figure 3.4). The user may

view details of tasks, and the task results. They may also delete old tasks and their

results.

This functionality is provided by simply including the original Discovery Net portal's

task management servlet within an IFRAME (embedded on the portal page).

Figure 3.4: Tasks Portlet

Analytical Portal Design

51

3.5.2.3 Userspace Index Portlet

This portlet presents a standard "file-explorer"-style interface for browsing the

userspace folders available to the current user (Figure 3.5). The list of items in a folder

includes descriptive attributes (type of file, date modified, size).

Figure 3.5: Userspace Index Portlet

The portlet is intended to be used in combination with other portlets. Other than

browsing, its main function is to allow the user to select items for further processing in

other portlets. Both files and folders in the userspace may be selected.

The user may specify the default folder path to be displayed on first viewing, in this

portlet's Edit mode.

Analytical Portal Design

52

3.5.2.4 Userspace Item Viewer Portlet

This portlet detects the selected userspace item from the Userspace Index portlet and

displays its contents in an IFRAME embedded within the portal page (Figure 3.6).

Different items are displayed appropriately for their type; some, such as workflows

and tables, are pre-processed and formatted for display in a web browser, whereas

others (images, custom data files such as molecules, unrecognised file types) are

presented to the browser in raw form with an appropriate "Content-type" header so

that the browser may use whatever display plugins are installed and appropriate. The

HTML table view additionally provides the option to export the table to CSV or

Spotfire[75] format.

The user may specify the default userspace item to be displayed, in this portlet's Edit

mode.

Figure 3.6: Userspace Item Viewer Portlet, showing a table item.

Analytical Portal Design

53

An alternate display mode allows a whole userspace folder to be viewed in summary

("detail") mode. This is similar to a normal folder listing, but further details of tables

and projects are shown in a compact form.

3.5.2.5 Userspace Item Manager Portlet

This portlet detects the selected userspace item from the Userspace Index portlet, and

offers appropriate management options. If the selected item is a file, it allows the user

to rename, move, or delete it. If it is a directory, the user may additionally create a new

directory within it, or upload a new item.

3.5.2.6 Userspace Upload Portlet

This is a standalone portlet allowing direct upload of tables or files to the userspace.

The target directory may be specified in this portlet's Edit mode.

The intention of this portlet is to provide users with a simple component which may be

added to a page near to a Service portlet, for convenient upload of resources to be used

by the service. However the Service portlet can also allow inline file upload as part of

the service parameterisation form, so the use of this portlet is not always necessary.

3.5.2.7 Admin Portlet

This portlet allows a Discovery Net server administrator to perform a number of

administrative tasks, such as installing new components or managing users and

groups. Like the Tasks portlet, this is implemented by simple inclusion of the original

portal's admin servlet within an IFRAME.

The portlet is protected using both the inbuilt authorisation checks in the admin

servlet, and role-based portlet permission settings in the portal server, which prevent

the portlet from appearing to unauthorised users.

3.5.2.8 Help Portlet

This portlet provides access to the Discovery Net Portal help pages, by inclusion of the

original portal's help pages within an IFRAME.

Analytical Portal Design

54

3.6 Portlet Message Flow

Each portlet provides a useful service, but most are not completely independent. For

example, the various Index portlets need to communicate with their respective 'detail'

portlets. The communication paths between portlets are illustrated in Figure 3.7. As

communication between portlets is not provided for in JSR-168, we implemented and

used our own portlet messaging (IPC) library, whose design is discussed in detail in

Chapter 5.

The most interesting part of this is the ability for messages to flow between Service

portlets. This allows the result of one service to be passed on as input to another

service (in fact the actual content of this message is the Task ID, as the result itself is

stored on the Discovery Net server). This allows multiple related services to be easily

used in sequence.

However, the users still need to know which services can be used together. The page

customisation features provided by a portal can be used to produce better ways to

publish and access a sequence of services than hunting through a simple service index.

A portal user with admin rights - for example the leader of a project group - can create

new portal pages and share them with other users. A new page or set of pages can be

created to provide access to a specific sequence of services, simply by laying out

multiple service portlets on a single page (or in a sequence of tabbed panes) and

configuring each service portlet to show the correct service. Then, new users can

simply be directed to these custom pages. The page creator can also configure

messages between the portlets so that service results are automatically fed into the

appropriate input parameters of other Service portlets; this configuration can be saved

as the default, so that from then on the users need not even be aware of the messaging

configuration and can just use the services as intended.

Analytical Portal Design

55

Service Portlet

Param

InputsParam

Inputs

Param

Outputs

Userspace Index

Portlet

Userspace Item

Viewer Portlet

Userspace Item

Manager Portlet

Service Portlet

Userspace

Item Path

Userspace

Folder Path

Userspace

Path (any)

Service

Path

Service

Instance

Note: Userspace Item and Service paths can sometimes be treated equivalently

Service Index

Portlet

Figure 3.7: Message flow between Discovery Net Portlets.

Input Messages Portlet Output Messages

(none) Userspace Index
Userspace Path
Userspace Folder Path
Userspace Item Path

Userspace Item Path
Userspace Folder Path Userspace Item Viewer (none)

Userspace Path Userspace Item Manager
Userspace Path
Userspace Folder Path
Userspace Item Path

(none) Service Index Service Path
Service Instance Name

Service Path
Service Instance Name

Dynamic parameter inputs
Service Dynamic action outputs

Table 3.2: Message inputs and outputs of Discovery Net Portlets.

Analytical Portal Design

56

3.7 Software constraints for the Discovery Net portal

Initial Discovery Net portlet prototypes were developed using Apache Pluto[30], the

reference JSR-168 portlet container. Once the basic concept had been proven, we

assessed the available portal software to choose one for integration and distribution

with Discovery Net.

The Discovery Net portal must be embedded in the existing Discovery Net server

installation, which is a J2EE application running on JBoss 3.2.7[50]. The original servlet-

based portal is still included in the distribution; the JSR-168 portal and portlets simply

provide an alternative, and so must be able to co-exist. Thus the technical constraints

for the Portal implementation include:

• Java (J2EE)-based

• Runs on JBoss

• Allows integration with existing Discovery Net user system.

We also required the portal to be open source (in case custom modifications for full

integration became necessary), and free for use in a commercial application.

In addition, for the Discovery Net portlets to work as intended, there are several

requirements relating to some specific Portal design choices (discussed in Chapter 7).

• Support for hosting JSR-168 portlets.

• Independent treatment of multiple portlet windows based upon the same

portlet instance (necessary to allow multiple Service portlets to show different

Discovery Net services).

• Support for turning off caching of portlet views in the Render phase (necessary

for the inter-portlet communication library to work).

• Ability for Struts-based servlet applications to co-exist with portlets in a portlet

application (the Discovery Net portlets are heavily dependent on the original

Struts-based portal).

Analytical Portal Design

57

Finally, the added value of the JSR-168 portal compared to the original portal is the

flexibility of allowing users to arrange services on their own pages. Thus, the portal

must provide web interfaces for users to create and customise personal pages. In

particular, they must be able to:

• add/remove pages

• add/remove portlets on pages

• arrange portlets on pages

3.8 Choice of Portal implementation

A comparison of available J2EE, open source, free portals was carried out in Spring

2005, to find those which best met our requirements. While this analysis was valid at

the time, it is important to note that development of portals proceeds very rapidly, and

new versions of many of these portals are now available.

We first investigated the features offered by each portal to confirm that they offered

adequate support for page management and integration with Discovery Net. Next,

likely portals were tested by deploying, in sequence:

• The testsuite JSR-168 portlets provided by Sun/Pluto (to confirm basic JSR-168

support)

• Simple example messaging portlets working with our IPC library (to confirm

IPC library support)

• Discovery Net portlets (to confirm Struts support)

These different portlets put increasing demands on the portal, and so if a portal was

found inadequate for one set, later ones were not tested with that portal.

3.8.1 Portals not examined

Several portals were considered but initial investigations indicated they were not

suitable.

Jetspeed 2[29] was still under development so was not included in the analysis. Jetspeed

1 was the original Apache Portal project, prior to JSR-168's release. Jetspeed 2 is a

Analytical Portal Design

58

rewrite which provides native JSR-168 support. However Jetspeed 2's page

management and customisation system was not developed until very late in the

development cycle, and at the time of the analysis even its design had not been

finalised. As this was an important part of our portal usage scenarios, we could not

consider the milestone releases of Jetspeed 2 as an option.

JBoss Portal[51] was just released at the time of the analysis, but requires a higher

version of JBoss (4) than that used in Discovery Net. However, when Discovery Net

upgrades its version of JBoss, this portal will be seriously considered, as the benefits of

using a pre-integrated portal cannot be ignored.

Stringbeans Portal[76], developed by Nabh Information Systems Inc., was in early

release and not sufficiently mature in features at the time. Additionally, it is available

under the GPL licence, and is not free for commercial use.

Sakai[71], also a comparatively recent portal project, started in January 2004 as an

evolution of uPortal[83] and CHEF. It is supported by academic organisations in both

the US (University of Michigan, Indiana University, Stanford and MIT) and the UK

(the JISC Virtual Research Environments Programme[21]). However, although initial

plans intended the use of JSR-168, in practice this has not been a high priority and

Sakai does not yet include support for embedding JSR-168 portlets.

eXo Portal[41], although open source, does not allow for free distribution in commercial

software.

3.8.2 Portal comparison results

Oracle Portal[66] was previously known to meet all of our portlets' software

requirements (as shown in the Business Intelligence demonstration in Section 3.9) –

except that it was not open source or free, and could not therefore be packaged as part

of the Discovery Net system. It did however act as a useful example for comparison. Its

main advantages are that it treats each portlet window as a separate instance, allowing

multiple Service portlets to operate independently, and provides a high-quality web

GUI for page construction and modification.

Analytical Portal Design

59

Apache Pluto[30] is the reference JSR-168 portlet container implementation, and was

used in early development of the Discovery Net portlets. However its portal

component is basic and not intended for production use, so again is included for

comparison.

As mentioned, the original Jetspeed Portal was one of the early generation of portals

and did not support JSR-168. However, the Jetspeed 2 developers back-ported the JSR-

168 support to Jetspeed 1, which was released as a hybrid Jetspeed 1.6 (named

"Fusion")[28]. This allows us the use of Jetspeed 1's mature user and page management

features, combined with modern JSR-168 compatibility.

Liferay[52] is a popular portal, particularly notable for its elegant styles. It is available

under the MIT license (a business-friendly open source license) and contains excellent

documentation and support for integration with JBoss and other application servers,

and with external user authentication systems. Unfortunately when we reached the

stage of deploying and testing Discovery Net portlets, we found that it was not

compatible. This was because it included its own custom support for Struts in portlets,

with a modified Struts library, which conflicted with our use of Struts in normal

servlets within our portlet application.

uPortal[83] is a portal targeted mainly at academic institutions, but can be used for any

subject matter. However while testing the IPC library portlets we discovered that it

automatically cached portlet displays, and used its own methods to determine when

the display needed to be re-rendered. Normally this would be an efficient approach,

but it effectively disabled the IPC library which relies on message retrieval during the

render phase. As we were unable to turn off this caching, we had to abandon uPortal

as a possible solution.

GridSphere[78], originally based upon code contributed from the commercial portal IBM

WebSphere[46], is closely associated with e-Science projects and includes a set of JSR-168

Grid portlets. Its features (such as page editing interfaces) were more 'barebones' than

the other portals examined at this stage in testing, but functional. However, it did not

allow for multiple independent portlet windows based upon a single portlet definition.

Analytical Portal Design

60

Table 3.3 shows a summary of the results, and includes the exact versions of portals

tested. Several portals failed our tests due to small issues that were nonetheless critical

to us.

Portal Version R
u

n
s

o
n

 J
B

o
ss

S
u

p
p

o
rt

s
JS

R
-1

68
 p

o
rt

le
ts

In
d

ep
en

d
en

t
P

o
rt

le
t

W
in

d
o

w
s

C
o

n
fi

g
u

ra
b

le
 C

ac
h

e-
ex

p
ir

y

S
tr

u
ts

 c
an

 b
e

u
se

d
 in

 p
o

rt
le

t
ap

p
s

w
it

h
o

u
t

in
te

rf
er

en
ce

W
eb

 in
te

rf
ac

e
to

 C
u

st
o

m
is

e
P

ag
es

W
eb

 in
te

rf
ac

e
to

 A
d

d
 P

ag
es

In
te

g
ra

ti
o

n
 w

it
h

 e
xt

er
n

al

u
se

r/
ro

le
 m

an
ag

em
en

t

Further Comments

Oracle Portal Developer
WSRP
preview

n/a � � � � � � n/a Commercial

Apache Pluto 1.0.1 rc2 � � � � � � � � Basic portal provided,
not intended for
production use

Jetspeed 1.6 � � � � � � � � JSR-168 support back-
ported from Jetspeed 2

Liferay Enterprise
3.2

� � � � � � � � The custom version of
Struts included in Liferay
conflicts with that used
by our application

uPortal 2.4.2 � � � � ? � � ? Uses its own mechanism
to determine when
portlet views need to be
refreshed - bad for IPC
library.

GridSphere 2.0.2 � � � � � � � ? Page customisation is
not as flexible as other
portals'.

Table 3.3: Portal Comparison (2005) examining suitability for hosting Discovery

Net portlets.

Analytical Portal Design

61

3.8.3 Chosen Portal

Jetspeed 1.6 was chosen as the most suitable portal to integrate with the Discovery Net

server. Among the portals considered, it was the only one to meet all the technical

requirements, and additionally provided excellent page customisation tools.

It is notable - and unexpected - that our requirement for independently-treated portlet

windows based upon the 'same' portlet (e.g. multiple Service portlet windows) was not

commonly implemented in the portals examined at the time. We were therefore willing

to bend this requirement if necessary, as similar (though inferior) functionality could

be obtained by adding multiple, numbered instances of the 'same' portlet in the

portlet.xml . However, we still consider this ability to be very important in fulfilling

our usage scenarios, and so in future this may turn out to be a key technical

requirement for analytical portals in particular. If the treatment of portlet windows is

clarified in the next Portlet Standard, this situation should improve.

On the other hand, page customisation (our other key feature identified for analytical

portals) was generally quite good, although some portals allowed more precise or

varied layout options than others.

Since the comparison was performed, there has been considerable activity in the Portal

market and most of the examined portals have released new versions. In addition, a

number of new products are now of sufficient standard/maturity that they should also

be included in any future comparisons. Of particular interest to us are Jetspeed 2, as we

are already using an early version of its JSR-168 engine embedded in Jetspeed 1.6, and

JBoss Portal, which would be most easily integrated with a future version of Discovery

Net running on JBoss 4.

However, one year after this comparison, we still consider Jetspeed 1.6 to be a good

choice, as it remains superior to Jetspeed 2 in page customisation, and JBoss Portal

requires a higher version of JBoss than that currently used by Discovery Net. Jetspeed

1.6’s main disadvantage is that it is a discontinued product, and for this reason

migration to Jetspeed 2 or another portal will be necessary at some point in the future.

Analytical Portal Design

62

3.9 Business Intelligence demonstration

The Oracle Business Intelligence demo application best illustrates the points put

forward in this chapter.

This demonstration was one of our first to use portlets, and was based upon Oracle

Portal, a component of Oracle Application Server[64]. Oracle Portal is a well-established

commercial portal, which supports its own native portlets. It provides a powerful web

interface for page creation and management, and treats each portlet window as an

independent instance with respect to both sessions and preferences. Oracle also sells

many of its tools as portlets (Oracle-native, not JSR-168), including Business

Intelligence[65] components such as Discoverer for viewing reports from data

warehouses, and Oracle Spatial[67] for visualisation of data over maps.

The demo was performed using a developer pre-release version of Oracle Portal, which

supported WSRP portlets and additionally provided a way of hosting and exposing

JSR-168 portlets through WSRP. The current version, Oracle Application Server Portal

10g Release 2 (10.1.4), was released in November 2005 and is the first full version to

incorporate this functionality.

We show a portal combining both Discovery Net Service portlets and existing Oracle

Business Intelligence portlets. By installing our Service portlets, any deployed

Discovery Net workflow can easily be accessed through the portal, providing flexible

analytical capabilities without significant effort on the part of the server administrator.

Discovery Net also includes a plugin allowing development of workflows which

integrate closely with Oracle databases and services, which allows for even better

integration with the Oracle data warehouse and business intelligence services (Figure

3.11).

The scenario examines sales data for a large chain of shops. The portal provides

information and analysis tools for people in different positions in the organisation.

Oracle Business Intelligence portlets present interactive views upon warehoused sales

data, allowing general managers to assess all shops' performance, and identify those

that are underperforming (Figure 3.8). The store managers can then examine specific

Analytical Portal Design

63

sales performance for each product type, drilling down into categories to find out

which products are not selling as well as expected (Figure 3.9). Discovery Net services

can then be used to analyse the data further, and aid in decision making - for example,

association rules can be found which indicate which products are usually bought

together, and by what customer demographic (Figure 3.10, Figure 3.12). A marketing

manager could then use these correlations to plan marketing campaigns and special

offers, to best promote the underperforming products.

Figure 3.8: Managers can identify which shops are underperforming and

instruct their store managers to take action. An Oracle Discover portlet is used

to display the summary information from a data warehouse, and Oracle Spatial

is used to show the same information on a map.

Analytical Portal Design

64

Figure 3.9: A store manager can use Oracle Discoverer portlets to examine sales

performance for different product categories, drilling down in problem areas to

identify products that are selling poorly.

Analytical Portal Design

65

Figure 3.10: Oracle Discoverer and Discovery Net services can be combined to

examine the sales figures broken down by customer demographic.

Figure 3.11: This workflow identifies products which might be best combined

in special offers, examining past sales data to generate association rules.

Analytical Portal Design

66

Figure 3.12: A marketing manager can use Discovery Net services (deployed

workflows) to explore the likely effectiveness of different offers to customer

segments, aiding in the construction of the marketing campaign.

Many people were involved in the development of this demonstration: my

responsibility was for the installation of the Oracle Portal developer preview, the

development of portlets for accessing Discovery Net functionality, and their

deployment on Oracle Portal.

This demo, the first to use prototype Discovery Net portlets, was very valuable both in

showing the benefits to applications of having available easily integratable Discovery

Net portlets, and in informing the design and development of the portlet prototypes.

An overriding requirement while developing the portlets was that their code must be

able to run completely independently of the Discovery Net server environment. This

was unlike the original Discovery Net servlet-based portal, which was hosted within

the same JBoss application server instance as the Discovery Net server, and had some

dependencies on core server code for convenience. As the portlets were based upon

and made use of many of the original servlets, these had to be refactored for

Analytical Portal Design

67

completely remote server interaction. It was also necessary that all Discovery Net

portal code was not reliant on any JBoss-specific settings or features. Having the

Discovery Net portlets deployed to an Oracle Application Server on one machine,

which then accessed the Discovery Net server on a different machine, demanded

resolution of these issues and effectively enforced this code design and the necessary

refactoring.

3.10 Conclusion

In this chapter we have discussed the way the aims and thus technical requirements of

an analytical portal differ from those of a more traditional portal, particularly with

regard to page customisation and the treatment of portlet windows.

We have described the design process of converting the existing Discovery Net portal

from servlets to a collection of communicating portlets, and our resulting technical

requirements for a portal implementation. We contrast this with the monolithic

approach of converting an application to a single portlet.

We then discussed our methods of choosing a portal best suited to these requirements,

and present the results of our comparison. Jetspeed Portal 1.6 was selected for

integration with Discovery Net, and has shipped with the latest commercial version of

Discovery Net, InforSense KDE 3.0.

Finally, we illustrated the value of having portable Discovery Net web components, in

a demonstration retail application which combined the established capabilities of

Oracle Business Intelligence portlets with the power and flexibility of Discovery Net

services.

The Discovery Net portlets developed provide access to the Discovery Net userspace

and allow for parameterisation and execution of workflows. Next we will look in more

detail at Discovery Net's web ‘deployment’ system for workflows, which enabled the

development of our generic Service portlet.

Web Interfaces to Research Services

68

Chapter 4. Web Interfaces to Research Services

The World Wide Web is currently one of the most popular ways of accessing

information over the internet. It is easy to learn to use, and accessible on almost any

networked computing platform. The web has achieved acceptance and everyday use

by many demographics, and has quickly expanded in functionality from the basic

provision of information to more interactive services (e.g. shopping, banking and

gaming). It is not surprising therefore that it has become one of the most popular

channels for researchers to access remote data and tools, whether for pure data

retrieval like searching the literature on PubMed[107] and finding information from

specialised databases (e.g. RCSB Protein Data Bank[108], NIST Data Gateway[102]), or for

active analysis using online services to process data (e.g. NCBI's bioinformatics

research tools[101]).

There are of course other methods for accessing remote services. Custom client

programs can be distributed and installed, which themselves provide an interface for

interaction with the service, and communicate with the remote server(s) using

standard or proprietary protocols. This was the approach used by many banks for

providing online account services prior to the Web era (e.g. the US bank Wells Fargo

first provided a service in 1990 on the Prodigy network[62]), but now, as the web has

matured and security features have improved, most provide pure web interfaces

(Wells Fargo was the first in 1995, and in the UK, Nationwide Building Society in

1997[62]). Special client programs are also often used to access research databases,

typically through a very rich interface tailored to the subject matter. For example, MDL

CrossFire[57] and SciFinder Scholar[72] provide access to chemical information and

literature, and the Virginia Bioinformatics Institute's pathogen portal project,

PathPort[68], provides client software to access their array of web services. Another

approach is to not distribute the client software to every users' machine, but instead

Web Interfaces to Research Services

69

install a single copy of a client program - perhaps requiring specific hardware - on one

machine, and share it throughout an organisation through remote login to a desktop or

shell.

Providing a web interface is currently a serious and popular option for new services, as

it requires minimal configuration (if any) of the users' machines, and reduces the need

to train users, who are already familiar with the conventions of web interfaces. Long

term support is simplified, as it is easy to find developers with the web development

skills required, and the interface (hosted entirely on the server) may be upgraded for

everyone as needed, without any intervention by the users. What it mainly lacks in

comparison with custom client programs is the full richness and flexibility of features

that only custom programming can provide. However it is still possible to enrich web

interfaces through the use of JavaScript[98], Macromedia Flash[54] and Java Applets[1].

Thus web interfaces are now ubiquitous, for performing all sorts of operations from

tracking parcel delivery, managing a bank account, or using remote analytical software

services. Many networked devices such as routers and scientific instruments often now

include an embedded web server, to allow remote configuration through a web

interface from any PC on the same local network.

4.1 Creating web interfaces

The majority of web interfaces are - like custom clients - bespoke applications, custom-

designed and implemented to access their own particular service (Figure 4.1). Each

web interface is typically a wrapper calling a 'real' service, whose behind-the-scenes

implementation varies depending on the situation: some services might be executable

programs called directly, some might be invoked through web services, others might

have their own proprietary communication protocol. In every case, there will have

been some non-trivial development work necessary to create, test and debug the web

interface in the first place - both the wrapper code, and the design and robustness of

the web form page(s).

Web Interfaces to Research Services

70

Figure 4.1: The European Bioinformatics Institute (EBI) provides a suite of tools

on its website[94], most accessible through web interfaces. It provides a dedicated

page or set of pages for each tool, providing users with appropriate

documentation and using standard HTML form controls such as combo boxes to

improve usability. This service allows users to search databases for matches to a

given nucleotide sequence using a BLAST (Basic Local Alignment Search Tools)

algorithm[168].

Web Interfaces to Research Services

71

A tempting approach that has recently arisen permits the automatic generation of web

interfaces, based upon a well-defined description of how to access a back-end service.

Theoretically, if all the services can be accessed using a known standard protocol (web

services using SOAP[17]), and the description of each service interface is provided in a

standard format (WSDL[6]), a script can be written to dynamically generate both

wrapper code and a web form for any service from just the interface description

(WSDL document, e.g. Figure 4.2). Thus, to generate a web interface to a web service, it

is only necessary to obtain a WSDL description of that service and provide it to the

interface-generation script. Such dynamic interfaces have indeed been built (e.g.

soapclient.com[43]) and the concept is of great value in eliminating the tedious process

of hand-crafting web interfaces, particularly when many services must be exposed.

However, the generated form interfaces, while functional, have generally poor

usability: the names of input parameters may not be helpful, usage descriptions are not

available, and the web form will usually only provide simple text boxes for entering

parameter values (Figure 4.3). In addition, the returned result will generally be in 'raw'

form, which may not be suitable for immediate comprehension or reuse. These

deficiencies are because WSDL describes the interface syntactically for use by software,

not for humans, and so does not have a standard way to include semantic metadata

describing the usage or type of the service's functions and parameters (Figure 4.2). As a

result, some organisations have come up with extensions to WSDL - some proprietary

(e.g. PathPort[68] web services have extra functions such as aboutService and

aboutOperations), others aiming to become standard (WSDL-S[84], DAML-S[174]) -

allowing metadata to be included, and so more user-friendly web forms generated.

Web Interfaces to Research Services

72

Figure 4.2: Partial WSDL of a web service provided by the EBI[94]. This web

service provides access to the same BLAST search tool as that shown in Figure

4.1. The WSDL is very verbose, and not intended for direct interpretation by

humans.

Web Interfaces to Research Services

73

Figure 4.3: Generic SOAP clients can read WSDL service descriptions to

automatically create interfaces and call the services. However, as there is very

little semantic information for the end user in WSDL, these clients cannot make

these interfaces user-friendly, and without access to documentation the service

may be practically unusable. This figure shows the soapclient.com[43] interface

generated from the WSDL in Figure 4.2. Compared to the EBI's custom web

interface for the same service in Figure 4.1, this interface is clearly far less

usable.

Web Interfaces to Research Services

74

Automatic generation of web interfaces is a concept particularly relevant to Discovery

Net: new workflows may be developed at any time, and providing immediate access to

these workflows through a web interface is a very valuable feature. It is not practical

for the workflow developers (who may not have any programming experience) to

create the web interfaces themselves, so an automated approach is the only sensible

option. Exposure of workflows through web services is also an important feature,

which is compatible with the previous web services discussion.

However, due to the limitations of WSDL regarding metadata, and the lack of a

suitable alternative standard, Discovery Net instead uses its own service description

language, as an extension of its XML workflow description language, DPML

(Discovery Process Markup Language). Rather than using web services as the common

wrapper language between the web interface and the services, we use proprietary

Discovery Net APIs, but the general approach remains the same (Figure 4.4). The

'deployment' of Discovery Net workflows as services is the main focus of this chapter.

Figure 4.4: Comparing approaches to service description by Discovery Net and

standards.

Implementation

Programmatic interface

Descriptive metadata

Web service Workflow

WSDL Deployment Descriptor

DAML-S Deployment Layout

Standards Discovery Net

Web Interfaces to Research Services

75

4.2 Discovery Net Service Deployment

The concept of workflow deployment as used in Discovery Net was first described and

implemented by Jameel Syed ("Information Structuring for Managing Discovery"[143],

Chapter 7). This model behind deployment is still used in Discovery Net, although

certain aspects have been re-implemented and extended since.

Generally in this thesis, we refer to a deployed workflow as a service. The deployment

process is a form of publishing, so that the workflow may be accessed by end users

with a web browser through the Discovery Net web portal.

The user of a service's web interface must be able to modify the service's parameters,

providing different settings or input data. The simplest approach would be to inspect

the workflow and generate a web form which allows the user to modify any of its

parameters before execution. However, workflows tend to contain many nodes

(usually >5), which themselves contain many parameters (usually between 1-10), and

as a whole are therefore quite complex - especially to someone encountering them for

the first time. In particular, a new user may not be able to tell which parameters on

which nodes can be modified, and which ones have been carefully set by the workflow

creator and should not be changed. Even expert users may find it tedious to have to

search through all the workflow parameters to find the right ones to adjust.

Thus the core idea, and value, of deployment in Discovery Net is that a workflow

developer defines a simplified interface, and the full workflow details are hidden from

the end (web) user. The 'deployment' process involves specifying which properties and

outputs should be visible and modifiable or executable by the end user (Figure 4.5).

This provides a "black-box" view of the workflow, where the user is aware of the

inputs and outputs, but does not know or care what is going on inside the box, in the

detail of the workflow. This deployed service is exposed by the server, and may be

accessed by third-party clients either as a web service or through the Discovery Net

API (Figure 4.6). Thus, once deployed, a workflow can be used in ways other than the

Discovery Net Java client, from command line clients to web interfaces. The Discovery

Net web portal uses the Discovery Net API to inspect and execute services.

Web Interfaces to Research Services

76

Figure 4.5: Deployment of a Discovery Net workflow is performed by

'promoting' or 'deploying' particular node properties and outputs.

Figure 4.6: Deployment of a Discovery Net workflow effectively publishes a

service interface to that workflow, which may be used to execute the workflow

either using the Discovery Net API or web services, through a web interface, a

Java client, or a command line.

Web Interfaces to Research Services

77

Although I have been significantly involved in the implementation of Discovery Net's

deployment system and portal, many of the aspects of deployment described below

were designed and developed by other members of the Discovery Net team. The

following descriptions are included in this chapter for completeness and due to their

core significance to the portal and portlets work described in other chapters. The

majority of my work on the core deployment process described here has been in

developing support for custom and complex parameterisation web interfaces, and also

for providing web visualisations of results.

4.2.1 Storage of deployment information

All deployment information is stored in the Discovery Net workflow description,

which itself is stored in the Discovery Net userspace. One workflow may therefore

only have one associated set of deployment information; if an alternative deployment

is required, the workflow must be copied.

4.2.2 Defining the black box

The core procedure in deploying a workflow as a service is to specify:

• Properties : values which may be set by the end user

• Actions : output points on the workflow to which the user may make the

workflow execute (and receive the result from that output port)

As part of normal workflow editing in the Discovery Net Java Client, the user can

select and ‘promote’ any node property or output to deploy it.

One significant advance in version 3.0 of Discovery Net is the introduction of

workflow-level properties, which are visible to all nodes within that workflow and

may be used as variables in expressions to set property values. Thus by changing one

workflow property, users can automatically configure dependent properties in

multiple nodes in the workflow. This feature can also be used as a simple

transformation layer, allowing the end user to input simple values into workflow

properties which are later converted to more complex node property values. For

example, in a node property containing a full SQL query, the end user may only need

Web Interfaces to Research Services

78

to change a small part of the whole query - indeed, it may be unwise to allow non-

expert users to specify the entire query.

Metadata is included as part of deployment. Each deployed property and action has a

name (specified by the deployer) and an optional textual comment, both of which will

be displayed on the web form to aid the user. A description may also be added for the

whole service.

Type metadata associated with properties is also included. Each property already has

basic built-in type information (e.g. String/Float/Date) and constraints, and these have

default rendering modes for web deployment (e.g. text box for String, checkbox for

Boolean). Some properties may have additional web rendering modes or configuration

available and these may also be selected upon deployment (e.g. a multiple selection

might use radio buttons, checkboxes or a list box; a molecular formula could be input

into a text box, or sketched in a custom applet). The implementation of different

property input renderers is discussed further in Section 4.2.3.1.

4.2.3 Creating the web interface

The deployment information, like WSDL in the web services example, is sufficient to

allow the Portal code to generate a web interface to the Discovery Net service. It

includes both the programmatic interface details (the service execution point, inputs

and outputs) and display information (names, comments, layout and rendering

instructions).

Programmatic interaction with the deployed service is performed using Discovery Net

APIs; although it could alternatively have been done with web services, direct access

through the API is more efficient.

The web display of input properties, results, and page layout has taken the bulk of

development time and is the most demanding part of the Portal implementation. It has

been through several iterations, aiming to meet user needs in both the deployment

process and the Portal. Without the advanced display features offered by this system,

the web interface would be far less valuable to the end users, who have high

Web Interfaces to Research Services

79

expectations for usability and customisation when creating web interfaces for their

services.

4.2.3.1 Input properties

Property values are provided by the user through a HTML form.

For simple property types, this is easy and natural - such as typing in a number, or

selecting an option from a combo box. As mentioned, each property already has a

default form element appropriate to its basic type (Figure 4.7).

However, other types are more complex, and may be less suited to being input by

keyboard into a text box (e.g. String values that require a particular format, such as

dates, or SMILES[74] strings for molecular structures). Such property types may require

custom input mechanisms: e.g. a combination of JavaScript and custom HTML to add

validation or create a more structured form interface (Figure 4.8), or a combination of

applets and JavaScript for full programming capabilities (Figure 4.9).

Figure 4.7: Basic property types displayed using standard HTML form elements.

A "userspace path" parameter allows the user to select a file from the userspace

or upload one to use as an input parameter

Web Interfaces to Research Services

80

Figure 4.8: A 'Date' input customised to use multiple combo boxes for more

accurate input, instead of a single text box. JavaScript is used to transfer the

final String value to a hidden form parameter.

Figure 4.9: Applets can be used to allow users to input more complex types.

Web Interfaces to Research Services

81

Some properties are dynamic: for example, their list of allowed property values may

change depending on previous workflow executions and different environments.

These properties cannot provide a static list of allowed values upon deployment, but

instead must generate and provide them at the time the service form is presented to the

user.

There is also a question of where and when validation of property values should

happen - it is possible to validate values as the user types them, or just before the form

is submitted, using JavaScript on the client; otherwise the values can be checked on the

server, and if there is an error the service submission must abort and the page reload,

informing the user of the problem. For either approach, validation rules must be

defined for every deployed property.

Fulfilling these requirements may be, and indeed has been, achieved in different ways.

In version 2.0 of Discovery Net, we chose to support "custom types" for deployed

properties, which were configured in an XML file editable by the workflow developer.

Any custom type could be registered as available for any node property, and each

custom type had corresponding HTML fragments which would generate the required

interface in the web form. When rendering a custom parameter in the service form, the

portal would retrieve and insert the fragments of HTML corresponding to that custom

type. This general approach - using XML and HTML fragments to define the property

input interface - enabled any developer to develop a new input renderer for any

property on any node, without needing to modify or recompile code. In addition, as

soon as any custom type interface was developed for a property (e.g. a 'date' input),

that custom type could easily be registered as available to all appropriate properties on

other nodes. However, this approach could not support dynamic properties, whose

input interface needed to be generated by active code (e.g. accessing a database for

values) at display-time, and as a result these needed special hooks and treatment on

the Portal using an entirely separate mechanism.

The stages in the rendering and submission of a service form are shown in Figure 4.10.

The rendering of a custom parameter is shown for the version 2.0 mechanism of

fetching fragments of HTML to insert into the form.

Web Interfaces to Research Services

82

Discovery Net ServerDiscovery Net Web Portal

1. Retrieve service through API

2. Service deployment description and state

3. Render service description

4. Render a String parameter (text box)

5. Render a Boolean parameter (checkbox)

6. Fetch custom parameter

7. HTML fragment for the custom parameter type

8. Replace special tags with runtime values

9. Render custom parameter

10. Render actions (submit buttons)

11. Render output results (in IFRAME)

User's Web Browser

Request service form

User edits service parameters

Submit form

Submit task (asynchronous)

Task execution

Return service form page

Repeat steps 1-11

Result saved

Refresh results IFRAME

Fetch result or task progress

Result or task progress

Return updated results IFRAME

Return service form page

Figure 4.10: Stages in rendering and submitting a service form in the Discovery

Net Portal version 2.0.

Web Interfaces to Research Services

83

In version 3.0, this approach to custom parameters was replaced by a pure Java

implementation, requiring the original developer of a node to explicitly implement or

specify any custom web renderers that the node properties would support. This is a

less rapidly expandable, but more integrated approach, more suitable for modularity

and code maintenance. The portal fetches the custom renderer class from the server

and provides this class with access to the web context information. Thus this approach

can also support nodes with dynamic requirements: Java code (which is executed on

the portal to generate the input interface HTML) is naturally more powerful than

simple fragments of JavaScript and HTML, and can (for example) query databases to

retrieve an up-to-date list of allowed property values. This model can be represented

by a small modification to the previous sequence diagram (Figure 4.11).

Figure 4.11: Modified procedure for rendering custom parameters in a service

form in the Discovery Net Portal version 3.0.

Web Interfaces to Research Services

84

There is still however inefficiency and duplication of effort for the node programmer,

who must define the input property interface for both the Java Client (using Java

Swing controls and layout with XUL, the XML User Interface Language[7]), and the web

interface. A more efficient approach, not yet explored, might be to describe both input

interfaces using the same XUL, which the Portal might then automatically convert to

HTML form elements. This would eliminate much of the effort that is currently

necessary for parameters using standard form controls, although it might be difficult to

implement parameter renderers that need to execute code at runtime to generate their

display, and special web-only renderers such as applets would still need custom

implementation.

4.2.3.2 Display of stored data and service results

Users need to be able to quickly assimilate, and sometimes interactively explore, the

results of service executions. Thus the display of result data is critical: either in a

browser through the use of applets or plugins, or with an external program installed

on the client - in which case, the data must be easily exportable. The following

discussion applies equally to service results and data stored in the userspace - whether

these are saved results, or files uploaded directly by the user.

Web browsers are not well suited to visualisation of results, when compared with the

flexible interactive visualisers in the Java client. A variety of approaches have been

tried, from converting the visualisers to Java applets, to creating cut-down alternative

visualisations, to simply ensuring smooth integration from the browser to launch

external programs, such as Spotfire[75].

Any node output may be deployed to produce a service result, but not all forms of

output data will be suitable for viewing through a web browser. There are two issues

at hand: the provision of the raw result data to the client as a result of execution

through the web portal, and the visualisation (possibly interactive exploration) of the

result data through the web portal.

The first is quite easy to support: tabular and text results are presented using HTML,

and if the node needs to return a binary result, MIME-formatted output will be

downloaded and treated appropriately by the web browser. Some file types will be

Web Interfaces to Research Services

85

automatically displayed by the browser (e.g. images, Figure 4.12), others may be

recognised and launched with the appropriate programs (e.g. Microsoft Office

documents, PDFs), or simply downloaded.

In addition, browser plugins may provide alternative or interactive visualisations of

some file types. For example, the MDL Chime[56] plugin allows browsers to 'recognise'

particular chemical file formats, and once installed, the browser will automatically load

such files using the Chime plugin rather than simply displaying the raw file contents

(Figure 4.13). To ensure that service results (or userspace items) are automatically

loaded by the correct plugin, the Discovery Net portal merely needs to ensure that the

responses include the correct "Content-Type" header for the file type.

Figure 4.12: Special nodes for the portal generate images (non-interactive) that

may be viewed by any browser.

Web Interfaces to Research Services

86

Figure 4.13: Installed plugins on the client browser deal with display of

recognised file types. Here the plugin MDL Chime[56] displays a PDB[108] result.

Figure 4.14: Output HTML to load an applet showing the result data (the data

may be passed as an applet parameter). The applet must be available for

download to the client, in a known location, so that the node can correctly

generate the HTML.

Web Interfaces to Research Services

87

For interactive exploration of results, it is necessary to use either browser plugins or

custom applets (Figure 4.14). There are several complications involved in using

applets, as will be discussed later (Section 4.3.1), but this is still a popular option.

Another alternative for richer result presentation is to save an HTML-formatted result

with associated resources (e.g. images) to the userspace, and then return its userspace

path as the result which the portal will then recognise and display in full to the user

(Figure 4.15).

However, despite the appeal of interactive or visual data, the majority of service results

will be in tabular or raw form, ready for further processing. Tabular data is displayed

in a formatted HTML table (Figure 4.16), but to reduce download time, only the first

few rows will initially be shown. Links are also available to export the data to a variety

of other formats, including CSV (e.g. for Microsoft Excel) and Spotfire[75].

Figure 4.15: An HTML-formatted result, with associated resources such as

images, is saved to the userspace.

Web Interfaces to Research Services

88

Figure 4.16: Tabular data is the most common form of result. The portal

recognises tabular results and automatically presents them as HTML. Options

are provided to save the table to the userspace, or export it to a variety of

formats for further processing in other programs.

4.2.3.3 Page layout

The layout of the web interface is the final aspect of customising the display for a

particular service.

A few default layouts are provided for all services. These use the simple but functional

approach of putting all input properties on the left hand side of the page, followed by

buttons for all published actions, and results on the right hand side of the page (Figure

4.12 - Figure 4.15).

The default layouts are often quite acceptable to users. However, some more complex

services, particularly those with many properties or outputs, can be better presented

with a custom layout (Figure 4.17). The Java Client includes a graphical Layout Editor,

which allows the user deploying the service to specify the placement of properties,

action buttons, and results on the page grid (Figure 4.18). They can also choose which

Web Interfaces to Research Services

89

renderers are used for properties and results, and insert additional elements such as

line breaks or explanatory text.

In addition, the Layout Editor allows the different elements of a deployed service to be

spread out across multiple pages, in a 'wizard'-like set with "Previous" and "Next" page

links (Figure 4.19, Figure 4.20). This is helpful when there are multiple stages within a

single service, so that a user may enter properties on one page associated with the first

action, then go to the next page for the next action and so on.

Figure 4.17: A custom layout for an image analysis service, allowing both the

input and result images to be shown and compared.

Web Interfaces to Research Services

90

Figure 4.18: The Deployment Layout Editor. Users can drag-and-drop every

element of the deployed service to their chosen place on the page.

Web Interfaces to Research Services

91

Figure 4.19: Creating a wizard-style service layout, with multiple pages, in the

Layout Editor.

Web Interfaces to Research Services

92

Figure 4.20: Wizard-style service layout from Figure 4.19 shown as three pages

in the Portal.

One feature that was considered but has not been implemented was the ability to

conditionally hide some elements of the service. This would be useful for services with

branching possibilities: an initial execution of an early stage of the service might close

off or enable other deployed actions and properties. Being able to show properties only

as they became relevant would improve usability. Currently, either the unused

properties would have to be shown and ignored by the user, or the service would have

to be split up into multiple separate deployed services, as discussed in Section 4.4.

Web Interfaces to Research Services

93

4.3 Discovery Net's demonstration scientific applications.

The Discovery Net project included a number of demo applications developed in

collaboration with research groups at Imperial College London and DeltaDOT Ltd.[92].

Our development of the deployment features discussed in this chapter was greatly

influenced by the requirements of these applications and their supporting workflows.

In this section, we introduce the three applications - GUSTO pollution monitoring, GM

Crop monitoring, and Earthquake analysis - and show how their Discovery Net

workflows were deployed to the portal.

4.3.1 GUSTO

GUSTO is a Discovery Net project based in the Department of Physics at Imperial

College London, developing sensors for environmental monitoring. The sensors

determine atmospheric concentrations of particular pollutants (sulphur dioxide,

nitrous oxides, ozone, and benzene) to parts-per-billion (ppb) resolution, by measuring

UV absorbance by the atmosphere[159]. Multiple distributed sensors would form a

monitoring network, producing a constant flow of real-time data; the relatively-cheap

GUSTO sensors would be numerous and take frequent readings (every 2 seconds),

resulting in a much higher spatial and temporal resolution than is possible in most

pollution monitoring networks. Such a network requires data warehousing,

visualisation and mining tools to examine both immediate changes and long term

trends (Figure 4.21): some of these could be provided by the Discovery Net platform.

This project's aim was to simulate the use of Discovery Net in combination with a

GUSTO sensor network to store and process pollution data. Analysis workflows were

built to mine the pollution data for trends, and visualisation components were

developed to allow the user to explore the data and results interactively. The data and

analysis services were then made accessible through the Discovery Net web portal.

Web Interfaces to Research Services

94

GUSTO

sensor

GUSTO

sensor

GUSTO

sensor

Sensor

details Pollution data

warehouse

Archived

weather

data

Web service:

Data upload

Web service:

Sensor registry and control

Web service:

Data access

Monitoring and

control software

Discovery Net

Server
(workflows)

Public access

web visualiser

Discovery Net

Portal

Visualisation and

data mining

Discovery Net

Java Client

Archived

health data

Figure 4.21: GUSTO sensor network architecture.

Figure 4.22: One of the identified sensor clusters shown over a map. The Sensor

IDs and common pollutant are shown over the sensor positions. This cluster

contains sensors along main roads.

Web Interfaces to Research Services

95

A common way of storing and displaying information with a geographical component

is by using GIS (Geographical Information Systems)[44] software. This allows data

linked to a map to be stored along with the map itself in a vector format. Discovery

Net's GIS map viewer (GISViz), originally developed by Salman AlSairafi[170] supports

one of the older GIS formats: 'shapefiles', developed by ESRI[40]. The GIS viewer

displays both the data stored in the shapefiles and a table of data from Discovery Net,

which may be linked to the map vector objects in the shapefile. However this

implementation could not initially display data changing over time, as would be

required for the GUSTO data, and several new features were requested by the GUSTO

team. Some of these new visualisations and the animation feature are shown in Figure

4.22 - Figure 4.24.

Figure 4.23: GISViz provides many display configuration options. Here, it has been set up

for a quick overview, using data that has been averaged over 15 minute intervals. Each

sensor location is represented by a bar chart showing the concentration levels for the

four pollutants measured. Only readings of dangerously high pollution levels are shown;

threshold filtering hides those with lower levels. In the background, an aerial photo has

been loaded instead of the vector maps previously used.

Web Interfaces to Research Services

96

Figure 4.24: Snapshots of GISViz animation, showing how the pollution level

changes over time, using the "Surface Layer" visualisation. This visualisation

approach is intuitively grasped by users, although it relies on interpolation

between sensors and can only show one pollutant at a time.

Web Interfaces to Research Services

97

Deployed versions of the workflows in the web portal are shown in Figure 4.25 and

Figure 4.26. The most significant work in this area was in web-enabling the GIS

visualiser. The GISViz application embedded in the Discovery Net Java Client was

extended and modified to allow its use as an applet in the remote client browser, for

interactive visualisation of the service results. In addition, alternate services were

produced which generated image snapshots of the GIS map view: these services thus

returned simple images as results, which are faster and less demanding on the client

machine than the applet approach, though less interactive.

Figure 4.25: A GUSTO service allows the user to retrieve the pollution sensor

data for a requested time period and pollutant. An image snapshot of a GIS

visualisation is presented to the user. The alternative output uses the GISViz

applet, allowing the user to adjust the map and data layers and animate the

display. The user may also choose to retrieve the underlying data table.

Web Interfaces to Research Services

98

Figure 4.26: A GUSTO service which graphically presents a chosen pollutant’s

concentration over time.

My work in this project focused mainly on the enhancements to the GISViz viewer, and

subsequently creating the workflows and deployed services for the web portal. This

development process revealed the difficulty of separating existing visualisers from the

Java Client in which they were embedded, as all dependencies from the core system

must be removed for the visualiser to be packaged as an independent applet. It also

highlighted concerns with security and data flow, as the applet needed to be able to

download maps and data from the Discovery Net server. Thus full authentication

information (username, password and Discovery Net server address) had to be

provided to the applet using applet parameters. However, the applet could not be

allowed to directly contact the Discovery Net server, as this would not work in the

scenario where the browser is accessing a public web portal but the Discovery Net

Web Interfaces to Research Services

99

server itself is hidden behind a firewall. Thus the portal had to act as a gateway

through which the applet could access userspace files (maps and data). In addition, the

portal had to initially acquire the applet JARs from the Discovery Net server and serve

them to the client browser. For this, the Discovery Net server had to provide an API for

downloading files which were not part of any userspace, but instead were resources

associated with particular nodes.

We also investigated the possibilities of using Discovery Net Portal version 2.0's

custom parameter mechanism to present a lightweight, user-friendly way of inputting

date parameters using JavaScript (Figure 4.8). The method used here is fundamentally

quite simple: the real parameter will always be submitted in the service form as a

single, String value. However, advanced custom parameter renderers can hide this real

parameter’s input field, and add new elements to the form for the user to interact with.

When the user has set a value using the custom interface, the JavaScript inspects this

value and serialises it to a String, setting it as the value of the hidden parameter input.

When the form is finally submitted, the portal ignores the extra form elements and

looks only at the values of 'real' inputs with names it expects to receive.

This work has been demonstrated at several conferences as part of Discovery Net (All

Hands Meeting 2004[152], Fourth International Workshop on Environmental

Applications of Machine Learning, EAML 2004[151]), and published in the ECEM/EAML

issue of Ecological Modelling[163].

4.3.2 GM Crop Monitoring

DeltaDOT Ltd.[92] is a biotech company spin-off from Imperial College London's High

Energy Physics department. Its novel biochip technologies allow fast, high-throughput

and label-free mapping of DNA and proteins using biosensors. In collaboration with

Discovery Net, it has developed use cases and provided sample data for analysis and

mining by the Discovery Net system.

This Discovery Net application concerns monitoring farm fields for contamination by

GM crops. The scenario examined an area centred around a known GM crop test field.

Samples would (theoretically) be taken by hand from many fields in the surrounding

Web Interfaces to Research Services

100

area over a number of days, and each sample would be tested for the presence of GM

material.

Figure 4.27: A mirror plot for comparing two protein profiles. The additional

protein in the GM sample is indicated.

The testing would be performed using DeltaDOT's biosensor technology, which uses

capillary gel electrophoresis to identify the components of a cell lysate sample. The

result of the analysis is a profile of the proteins contained in each sample, with each

protein distinguished by its mass. Figure 4.27 shows the mirror plot used to compare

samples; the presence of GM proteins in a sample would suggest contamination by GM

seeds or crossbreeding.

Hence, the main analysis in this application focuses on differences between protein

profiles, which involves the presence or absence of proteins, or changes in the amount

(up/down-regulation) of a particular protein.

Several sets of simulated data were provided by DeltaDOT, each using different initial

assumptions, and I developed the necessary workflows and visualisations to process

the data. The result of this demonstration was similar to that from GUSTO, with an

analysis workflow to analyse and collate the data, visualisations in GISViz, and a focus

on the portal for dissemination of data and results (Figure 4.28, Figure 4.29).

Web Interfaces to Research Services

101

The simulated results were visualised using the Discovery Net GIS map visualiser

(GISViz) to show the distribution of GM material in different fields for five different

scenarios. This required the development of support in GISViz for displaying data

associated with arbitrary locations, in contrast to the GUSTO sensors whose fixed

positions were displayed using a custom map layer (shapefile).

This project has been demonstrated at conferences as part of Discovery Net, and was

published as part of the proceedings of All Hands 2004[169].

Figure 4.28: Visualisations of the scenario results deployed in the portal as

GISViz snapshots.

Web Interfaces to Research Services

102

Figure 4.29: The GISViz applet deployed in the portal allows the user to

interactively explore the results. They may switch between and compare

scenarios with different initial conditions, add/remove backgrounds, and filter

results by specified thresholds.

Web Interfaces to Research Services

103

4.3.3 Earthquake Analysis

The Earth Sciences Discovery Net application involves the monitoring of geohazards

such as earthquakes using satellite images.

Pairs of images (Figure 4.30) of the same location, taken at different times, are analysed

to determine how the landscape has changed. By doing this a picture can be built up of

how the surface is moving over a wide area, which is useful for modelling faults and

predicting future movements.

Figure 4.30: The two images of the same area (Three Gorges Dam/Reservoir

Region in China) used for comparison. The source images used in the analysis

are each 32 MB in size.

The analysis process identifies the movement of each pixel for each image pair, using

an image shift algorithm developed by Dr Jinming Ma of the Earth Sciences

department at Imperial College London. This analysis of the large source images is

intensive and requires cluster processing for reasonably fast results. This was done

using 20 computers in the Viking cluster at Imperial (London e-Science Centre[80]). For

display, the image is partitioned and the movement averaged to present the result as

arrows overlaid on the original image, showing the direction and magnitude of

movement. This work has been described in detail in several papers[147,146,142].

Web Interfaces to Research Services

104

I integrated this image shift analysis program into the Discovery Net architecture so

that more advanced analysis workflows could potentially be built upon the existing

single analysis task. In use, the analysis workflow developed would be executed

multiple times with different parameter settings for both the image shift analysis and

the result display. I developed and deployed workflows allowing this complete

analysis procedure to be conducted through the web portal (Figure 4.31).

Because of the relatively long run time for the image shift algorithm, even with small

source images, this application highlighted the requirement for caching when using

deployed workflows; at the time of this demo development, services were not stateful

and so a workflow consisting of multiple stages (e.g. to inspect a visualisation and then

download the raw data, or proceed with further analysis) would need to execute from

the beginning every time it was run. This research approach was later supported in

Discovery Net version 3.0 by the introduction of stateful services, which cached

intermediate results between executions.

a)

Web Interfaces to Research Services

105

b)

Figure 4.31: The Earthquake application allows users to a) first apply the image

analysis algorithms to detect movement by comparing two input images b)

tweak the result display by modifying arrow rendering. This process could

easily be expanded to include further image processing steps.

In this demo, Discovery Net is used mainly to orchestrate the execution of processes on

remote resources, and theoretically the demo could be extended to use a number of

workflows representing different stages in the analysis process. Each workflow could

be deployed as a service, and the services used in sequence, passing data from one to

the next, or repeating stages with different parameters if necessary. Thus it clearly

showed a need for connecting data flows between multiple services, so that results

from one service execution could be passed to another service as input. This informed

our later development of communicating Discovery Net Service portlets.

Web Interfaces to Research Services

106

4.4 Using multiple services

Several of the applications studied can use multiple services in sequence to perform a

larger task. An alternative approach is to include all analysis steps in a single

workflow, and deploy that workflow as a single service with multiple sequential

outputs - version 3.0 of Discovery Net stores the state of each deployed service

between invocations (Figure 4.32), so such a workflow can be executed in stages

without having to re-do all the steps from the beginning every time.

Figure 4.32: Discovery Net v.3 supports independent instances of deployed

services, each maintaining its own state.

The approach of developing multiple separate services makes sense when the

individual steps may be recombined and reused as components of a different analysis

procedure, or when the steps themselves can each be used independently. This

approach is more flexible, but adds two complications: the user of the web interface

will need help navigating between different deployed services in the right order, and

results must be passed from one service to the next.

This is a very common situation, which emerges in any use of online analytical

services, not just Discovery Net. For example, users of public bioinformatics services

may use multiple websites (e.g. NCBI[101], EBI[94]), standalone programs, and/or

Web Interfaces to Research Services

107

programs installed on local networks, and usually have to manually pass information

between tools by copy-and-pasting results.

Data can also be passed between Discovery Net services by copy-and-pasting. A more

efficient method, particularly for large amounts of data, is to have one service save its

result to the userspace, and then the user can select that data file as input to later

services. Again, however, the user must explicitly control the data flow - first naming

the result file, and then selecting it as input. This tedious situation is actually one

which the use of Discovery Net was originally intended to avoid, by orchestrating

disparate tools in a single workflow system.

The standard Discovery Net Portal does not have any special support for guiding the

user between related services, or for passing data between services (other than that

outlined above). In this original portal, all services are accessible from one global

Service Index page, in which services are ordered by their location in the userspace.

This simple approach becomes unwieldy when there are many services to look

through, or when the user must repeatedly return to the index page to find the next

service in a sequence.

The use of portlets can help in both these areas, as discussed in Chapter 3. However,

this is an area which could still use further research to examine orchestration of

Discovery Net services at the server tier rather than the portal tier.

Web Interfaces to Research Services

108

4.5 Conclusion

In this chapter, we have discussed the current popularity of web interfaces for

accessing remote services, and described how interfaces can be dynamically generated

to access well-described services such as Web Services using WSDL. We have detailed

the current problems with such approaches and the importance of service metadata in

generating user-friendly web interfaces.

We have covered Discovery Net's 'deployment' of services as encapsulated workflows.

The necessity of customised service interfaces, rich input methods and result

visualisation have been outlined, with our implementation approaches.

We then described in some detail Discovery Net's example scientific applications,

which were the drivers and demonstrations for much of this deployment functionality.

They primarily focused on deployment of analysis workflows and the details of the

web interface, particularly developing web-deployable versions of result visualisers

(e.g. the GIS map viewer) using applets. They also revealed the need for stateful

services (caching intermediate result data for use in further executions of the same

service), which was introduced in version 3.0 of Discovery Net, and for transmission of

data between services (a service result being used as input to another service).

We concluded by summarising the issues involved with composing multiple services

together in a larger analytical pipeline, which has particular relevance to the use of

portlets (Chapters 3 and 5).

Inter-portlet communication

109

Chapter 5. Inter-portlet communication

One of the commonest queries from new portlet developers is how to create a link in

one portlet which can trigger a response in a different portlet (typically an Index

portlet which triggers the display of an item in a Display portlet, illustrated in Figure

5.1). The problem stems from the way the portal has to keep portlets from interfering

with each other: clicking a link in one portlet results in a request which is processed by

only that portlet, so all other portlets are completely unaware of the interaction, and

cannot see any parameters that might have been passed. Thus, for this scenario, the

first portlet needs a way to explicitly send a message to the second, informing it of

what action to perform or information to render. This functionality is commonly

referred to as inter-portlet communication (IPC).

Customer List Portlet

Customer A

Name

Address

Orders...

Customer Details Portlet

Customer A

Customer B

Customer C

 none selected

Customer Details Portlet

Customer List Portlet

Customer A

Customer B

Customer C

Page reloads

User selects a

customer

Figure 5.1: Scenario: communication between two portlets

Inter-portlet communication

110

However, the method of inter-portlet communication is not defined in the current

portlet standard (JSR-168), although it will be in the next version. Almost every portal

has its own custom implementation, with different messaging behaviours and APIs.

Non portal-specific (i.e. JSR-168-compliant and portable) solutions are possible, but

require the portlet developer to implement their own IPC system.

Another common request is for a hyperlink in one portlet to navigate to a different

portal page or portlet. Initially this seems trivial, it being the normal and expected

behaviour in non-portlet-based websites: a hyperlink may reload the same page

(perhaps with different parameters in the URL), but is more likely to take the user to a

different page on the server. However in the context of a portlet, there is a fundamental

piece of information which is unknown at portlet development time: the URL of the

target portal page. This is because the portlet is likely to be developed well in advance

of the portal(s) it may eventually be added to: it is developed as a reusable component

with no knowledge of its eventual environment(s). Hence, a single portlet is usually

designed to be self-contained; a link within a portlet usually targets itself with new

parameters that modify its actions or display, and the generation of this URL is

abstracted and delegated to the portal.

When communication between portlets is introduced, the approach of generating self-

referencing links in portlets becomes inadequate, as it may make more sense to

navigate to a different portal page rather than reloading the same one (for example, if

the Display portlet is on a different page to the Index portlet, it is convenient for a

selection on the Index portlet to additionally navigate to the Display page). Therefore,

navigation between pages is a feature sometimes included and discussed under the

topic of IPC as it is often an associated necessity. In this thesis we do not include

navigation between portal pages as a critical component of IPC; however, we do

discuss how limited page navigation might be supported (Section 5.4).

IPC is not appropriate for all situations: sometimes it may be better to develop one

portlet which can perform multiple tasks in different modes, rather than a collection of

portlets that communicate amongst themselves. In particular, if the messages to be sent

between portlets are large or frequent, and the portlets are tightly coupled and must

always be used together in a particular arrangement on the page, this may indicate that

Inter-portlet communication

111

the portlets would be more easily merged into one large portlet. However, if the

portlets are related but only loosely coupled - each being responsible for well-defined

and largely independent tasks - it may be more appropriate to treat them as

components, linked using IPC.

In this chapter we will discuss some of the portal-specific IPC solutions available, the

possible approaches for IPC implementations within JSR-168, and finally our

development of a JSR-168-compliant IPC library.

5.1 Portal-specific IPC Implementations

Portals which implement their own custom inter-portlet communication mechanisms

provide a communications API which allows the portlet developer to concentrate

simply on sending the messages, without needing to know about the back-end

implementation.

Often, the process of linking portlets together with messaging must be performed by a

portal developer or admin, using portal-specific configuration tools or APIs. This is

acceptable for static site layouts controlled by the portal admin, but does not easily

allow changes later. In contrast, the most advanced implementations of IPC can be

configured using web-based control panels at runtime, allowing the end user of the

portal to set up communication between portlets.

As discussed in Section 7.3.3.1, there is some variation in the treatment of portlet

instances, and this affects the way IPC is configured in different portals. Most portals

treat each portlet window as an independent source and sink of messages, and this is

reflected in their IPC configuration tools, where configuration is done in parallel with

creating pages and placing portlet windows. However, some portals are more

restrictive and consider the portlet entries in the portlet.xml registry as the true

portlet instances, so the IPC configuration is tied directly to these and is not associated

with the page layout or portlet window IDs.

Some portals have extended their implementation of JSR-168 to support their own IPC

system; many simply continue to support their own non-JSR-168 portlets, which often

Inter-portlet communication

112

include native IPC support preceding JSR-168 by several years. In either case, use of

the portal-specific IPC solutions, even those that extend JSR-168, will result in portlets

which can only be deployed on that portal. We outline the features and approaches

used by a number of portal-specific IPC implementations below.

5.1.1 BEA WebLogic[35]

BEA WebLogic manages portlet communication using a system similar to Java

Listeners[134]. Portlets can be configured to listen to another portlet, identified using the

source portlet window's unique ID, which is generated by the Portal. Portlet state is

managed with explicit "page flows", which are defined using an editor program. A

message is triggered by a user clicking on a link which corresponds to a named action

in the page flow. When such a link in a source portlet is clicked, the corresponding

function is also called in all listening portlets.

This approach requires the exact communication links between portlet windows to be

specified during portlet development.

5.1.2 IBM WebSphere[46]

IBM WebSphere's system for portlet communication is called "message events".

Portlets which are in the same portlet application can send and receive messages

(which may consist of any Java object), addressed using portlet window IDs. Portlets

may implement a MessageListener interface, which includes a function that will be

called when a message is received.

To process messages, the Portal manages the execution of the following, each time a

page loads:

1. all action events (these may send message events)

2. all message events, executing Listener functions on the receiving portlets (these

may send more message events, which will be processed until no more are left)

3. all window events (requests to change window state)

4. all renders (any messages sent during this phase will be ignored)

Inter-portlet communication

113

This procedure allows a message to trigger other messages, in a branching message

chain which is fully processed before the page renders. Because messages may only be

sent in the Action phase, and all message events are dealt with before the render phase

begins, the message state is consistent and safe from any further changes when the

portlets finally render.

WebSphere's advanced IPC system allows portlets to be developed without specific

reference to particular portlet IDs or even agreed message names; the portlets are thus

reusable components independent of any particular portal layout. Such cooperative

("Click-to-action") portlets register with a Property Broker, and a "Portlet Wiring Tool"

portlet allows the Portal user to map connections between published properties and

consumed properties at runtime.

5.1.3 Sybase Enterprise Portal[77]

Sybase Enterprise Portal 6.0's IPC implementation uses the Event-Listener model and is

configured at page design-time using custom programs. Published message events are

given global names, and are accessible across the whole portal. Limited types of data

can be included in messages, as the implementation provides messages to portlets as

CGI (Common Gateway Interface) form parameters.

5.1.4 Oracle Portal[66]

Oracle Portal (part of Oracle Application Server 10g) has an advanced IPC system

which is configurable at runtime by any page designer. This is a custom

implementation which only works with Oracle's own native portlets.

Oracle defines three different kinds of parameters available to its portlets:

• Private: Private parameters correspond to JSR-168 portlet parameters, and are

only visible to one portlet window.

• Public: Public parameters are defined by the portlet programmer, and make up

the portlet's published interface: the inputs and outputs of the portlet. At

runtime, the page designer can assign values to these parameters (using a

constant, a variable, or a page parameter).

Inter-portlet communication

114

• Page/Page Group: Page (Group) parameters are created and set at runtime by

the page designer, and associated with a particular page or page group. The

page designer can then map them to public parameters of portlets. In this way,

multiple associated portlets on a page - e.g. each showing different information

on a selected item - can be configured by a single change to a page parameter.

Each messaging event, with its associated public parameters, is explicitly defined by

the portlet programmer as part of the portlet's published interface. At runtime, the

page designer can configure the effect of the event produced by a portlet window: it

can set page parameters from event parameters, and/or cause a redirect to a different

page.

Like IBM WebSphere’s approach, Oracle’s IPC implementation allows portlets to be

developed and used as components which are independent of any particular portal

layout, and configured through a web interface on the portal.

5.1.5 eXo Portal[41]

eXo Portal's IPC implementation uses an extended version of the JSR-168

PortletContext to send messages in the Action phase, either directly to a named

portlet or broadcast to all portlets in the same portlet application. MessageListener

classes are registered in the portlet.xml , using eXo-specific extensions. The portlet

entities referenced by name correspond directly to portlet instances in the

portlet.xml , not individual portlet windows on pages.

5.1.6 Plumtree Portal[89]

Plumtree is unusual in using AJAX[27] to render and update the display of portlet

windows on a page, so that it is not necessary to reload the entire page when a portlet

renders. Implicitly this method relies on the portal providing a way to remotely update

and retrieve a single portlet window's fragmentary content, outside the context of the

aggregated page; this is not a usual feature in portals (see Section 7.3.2.7). This is

however a rendering approach which is becoming more seriously considered, as it has

advantages in efficiency and speed. It does introduce potential problems with usability

and stability, due to the differences in page behaviour (e.g. bookmarks and the 'back'

Inter-portlet communication

115

button may not behave as expected), and varying support for JavaScript in different

browsers.

The dependence on JavaScript for page rendering allows the messaging logic layer to

be moved from the server to the JavaScript on the client. Thus, a user clicking a link in

a portlet will trigger a local JavaScript function call instead of a direct page submission

to the server. This will in turn trigger JavaScript listeners belonging to other portlets,

which can retrieve updated portlet window renders to display to the client, or redirect

the client to a different page.

Thus, the standard JSR-168 portlet request handling is largely bypassed for messaging,

as all message events are triggered and processed on the client. Messages are not sent

within either the action or the render phase, but in JavaScript on the client, and

messages can be chained as many times as needed. JavaScript message listeners may

invisibly initiate any number of new portlet requests behind the scenes, to update

portlet state and retrieve new window renders.

The IPC configuration (e.g. message names, implementation and registration of

JavaScript listeners) is hard coded by the portlet programmer, and is not modifiable by

portal users at runtime or during page construction.

Since the time of our investigation, Plumtree have been acquired by BEA, which has

rebranded the portal as "BEA AquaLogic User Interaction"[89].

5.1.7 Liferay[52]

Like eXo, Liferay adds its IPC support by extending its JSR-168 implementation. It does

this by introducing new versions of the JSP tags for generating links in a portlet.

The usual JSR-168 actionURL and renderURL tags generate URLs which lead to a new

Action or Render request targeted to the current portlet, with associated parameters

and any other attributes such as changes of window state or portlet mode.

Liferay extends these tags with a new attribute, allowing the portlet developer to

specify a portlet name to which the new request will be targeted. This approach allows

a portlet to send information to another portlet very easily. However, there are some

Inter-portlet communication

116

limitations: messages cannot be broadcast to multiple portlets, and as the originating

portlet is no longer targeted, it will have no way of knowing what link has been

followed, or even that it has been clicked.

5.1.8 JBoss Portal[51]

JBoss Portal 2.2 provides its own IPC implementation as an extension to JSR-168. Its

approach is to allow listeners to intercept events on the server and modify or redirect

them.

Using JBoss's IPC, the portlet sending a message does not need to write any messaging-

specific code; instead it simply posts the information to itself as a normal Action

request. The receiving portlet will have registered a Listener class at deployment time

(this is configured in a deployment descriptor file). The Listener can inspect all events,

and when it finds an Action event from the named source portlet window, it can

intercept and replace it with a similar Action event targeting the listening (also named)

portlet window.

Thus in behaviour this would act similarly to Liferay's implementation (although it is

more flexible): an Action URL in one portlet can result in that Action being executed on

another portlet window.

Inter-portlet communication

117

5.1.9 Summary

B
E

A
 W

eb
lo

g
ic

IB
M

 W
eb

S
p

h
er

e

S
yb

as
e

E
n

te
rp

ri
se

P

o
rt

al

O
ra

cl
e

P
o

rt
al

E
xo

 P
o

rt
al

P
lu

m
tr

ee
 P

o
rt

al

L
if

er
ay

JB
o

ss
 P

o
rt

al

Approach

Event/Listener � � � � �

Intercept/Redirect � � �

Configuration

Hardcoded in portlet source � �

Deployment descriptor � �

Portal page design time � � � �

Run time � �

Messaging features

One to One � � � � � � �

One to Many � � � � (�) �

Message Chain possible � ? � �

Implementation tier

Server-side � � � � � � �

Client-side (JavaScript) �

Table 5.1: Comparison of Portal-specific implementations of Inter-portlet

Communication (2005)

Inter-portlet communication

118

5.2 Implementation approaches for JSR-168-compliant IPC

In JSR-168-compliant implementations of IPC, the portlet developer must completely

define and implement the details of the communication system. The developer is

necessarily restricted to using only the portlet features and services defined by JSR-168.

Most of the custom approaches to implementing IPC taken by portals are not suitable

for use in a pure JSR-168 portlet, as they require portal-level modifications (usually to

the portlet request processing procedure) that are beyond the reach of portlet code.

5.2.1 Communication Model

The first consideration is the choice of communication model used.

5.2.1.1 Event/Listener

The Publish-Subscribe channel[137] is a common messaging model where a single

message may be sent to any number of registered receivers. The sender may

communicate directly and synchronously with the receivers, or it may use a mediating

messaging system, which decouples the messaging agents and allows for

asynchronous operation (e.g. storing messages if a receiving agent goes temporarily

offline).

The Event/Listener model (using the Observer Pattern[134]) is an implementation of this

form of messaging which is commonly used in J2EE applications, and is the most

popular choice for portlet messaging among the proprietary IPC implementations

examined. It is well-defined and reliable, allowing programmers to implement and

register Listeners to link portlets with message events. While some portals only permit

1:1 messaging, others allow 1:Many. A proprietary portal has the advantage of

controlling the messaging system, and can as a result improve efficiency by re-

rendering only those portlets which have received messages, and also may support

message chaining.

Inter-portlet communication

119

Unfortunately, this model requires portal-level support to be properly implemented. In

particular, we believe this model is unsuitable for a JSR-168 solution for the following

reasons:

Firstly, a listener registry and event system must be in place in the portal to call

listeners when a messaging event occurs. This registry must be well integrated, so that

any portlet windows can receive and act upon messages - even if the user has not yet

visited and instantiated the portlet windows in the current session. In the portals

examined this has been implemented in a variety of ways, from various modifications

to the request processing pipeline (e.g. IBM WebSphere) to a mostly client-side

JavaScript/AJAX[27] implementation (Plumtree Portal). The portal must also provide

listener configuration tools, which is again reliant on portal-level support to enable

configuration of not-yet-visited portlet windows at runtime.

Secondly, configuration of listeners must be complete before the user can be allowed to

trigger any message events. Once an event has occurred, it is too late to configure a

new portlet to listen to it. This is a design (not implementation) restriction of the

model, but it is exacerbated in JSR-168 due to the lack of information about available

portlet windows.

Thus, the main problems with the Event/Listener model are due to the way the

messaging system must 'push' messages to the receivers. In the context of a JSR-168

portlet, which has limited or no information about other portlets in its environment

(and no access to a messaging system with more privileged knowledge), this cannot

always be done reliably, and there is also no way of triggering the receiving portlets to

act upon the message within the standard portal request sequence.

5.2.1.2 Interceptor

Some of the custom portal implementations examined (e.g. JBoss Portal) use a simpler

intercepting filter[131] approach, where portlet actions – normally targeted to the source

portlet – can be intercepted and overridden by a custom handler from another portlet.

Inter-portlet communication

120

This filter generally must be configured as part of the portlet application setup, and

also requires core support from the portal engine; it is therefore not suited to a JSR-168

compliant implementation.

5.2.1.3 Agent Messaging

The messaging models used by mobile Agents[132] must account for certain limitations

of their working environment that have similarities to those encountered by portlets.

In particular, agents may move to different ‘places’, each of which may contain

elements of a messaging system. At any point in time, an agent may wish to send a

message to another known agent, without knowing where the target agent is located or

whether it is even contactable at that point in time. Alternatively, there may be no

known target, and a message may be broadcast for any agent to pick up.

A portlet with no access to a portal-provided messaging system will also be in the

situation where it has no knowledge of its audience, and no ability to directly address

messages to another portlet. The limited portlet lifecycle (portlet windows are only

‘active’ when in either their Action or Render phase, which are triggered only at the

request of a user visiting the page that contains them) is similar to an agent which is

only occasionally connected to a network and able to pick up messages.

Given that we are interested only in agent messaging models where the sending agent

does not know the details of the receiving agent, the Blackboard model[132] appears to

be the most relevant. This is a simple model where the sending agent deposits a public

message at each place it visits, and all receiving agents check for messages at each

place. The portal situation corresponds to the simple case where there is only one place

where messages can be stored (and agents/portlets can be present, although they could

also be ‘offline’).

This simple model has the advantage over Event/Listener of supporting

communication when the receiving agents are not known. It requires a central location,

accessible to all agents, where messages may be stored. Its disadvantage is the lack of

structure: all messages are effectively broadcast to all agents.

Inter-portlet communication

121

5.2.1.4 Message Board

Each model examined so far has both advantages and disadvantages in the context of

portlet messaging. Our final model takes many of these aspects and combines them in

a way allowing optimum flexibility while constrained by the limitations of remaining

JSR-168 compliant and portal-independent.

Particularly relevant messaging concepts for portlets include:

• Decoupled messaging (Mediator pattern[134]) using a Message Broker[137], so that

the sending portlet does not need to know the message’s destination.

• Global messaging (broadcast), as the portlets cannot know of all the possible

receivers.

• Asynchronous and unreliable messaging, as there is no guarantee that a

receiving portlet will ever become active to read its messages.

• Topic-based messaging[137] (e.g. JMS[117]), which is an asynchronous and

decoupled approach to the Publish-Subscribe pattern. This adds structure,

allowing differentiation between messages but without requiring agents to

have knowledge of each other.

We found a combination of the Blackboard model (asynchronous, anonymous,

unreliable) and Topics (structured, mediated) to be the most appropriate for the

environment of a JSR-168 portlet. In this “message board” model, messages may be

published to a public space, and receiving portlets may explicitly read ('pull') any

messages they are interested in, in their own time (Figure 5.2). This model does not

require listening portlets to be registered before a message is sent; indeed, a new

portlet window can easily be added to a page and configured to read a message that

was sent previously in the session.

To simplify and abstract the sending of messages by portlets, we introduce a

messaging mediator within the portlet application, which manages the distribution of

messages to Topics and the delivery of messages when requested by receiving portlets.

This will be discussed in more detail later in this chapter.

Inter-portlet communication

122

Figure 5.2: Message board model for IPC

5.2.2 Message Timing

Within JSR-168, we are restricted to sending and receiving messages within the

standard portlet request handling procedure (Figure 2.6). Thus, messages may only be

sent or received in the Action phase (while a request to the portlet is being processed,

e.g. from a form submission) or in the Render phase (while the portlet display is being

generated).

5.2.2.1 Sending Messages

Those portals whose portlet interfaces are close to JSR-168 typically require that

messages are sent in the equivalent of the Action phase. This is because the Action

phase is guaranteed to complete before the page starts rendering, so this policy should

ensure that all portlets on the page see the same messages while they render. If the

portlets were to send messages in the View phase, portlets rendering later on the page

might show views inconsistent with other portlets, particularly if the portal uses

threading to render portlets in parallel. This approach fortunately also corresponds

well with the usual client behaviour that should trigger a message: for example,

selecting an item in an Index portlet to trigger a message from that portlet containing

the item's ID.

Inter-portlet communication

123

However, sometimes a message may be triggered by a non-client event: namely, in

message chaining, where as a result of receiving a message, a portlet may need to send

another message. In this case, the portlet will not have the opportunity to go into the

Action phase to send the message, and if it is to send at all, must do so in the same

Render phase. As this may result in the confusion and inconsistency described

previously, this is not recommended - nor will it support multiple stages of message

chaining within a single page render. This is one of the main disadvantages of using

the Message Board model as opposed to a true Event/Listener system.

5.2.2.2 Receiving Messages

Portlet windows may retrieve messages at any time when they are active - that is,

during the Action or Render phases.

Portlets can therefore only retrieve and react to messages when a client views the

portal page containing them, and (unless it is acceptable to put 'Update!' Action

buttons in every portlet) this must be done in the Render phase. This goes against the

recommended practice of making the Render code as lightweight as possible. A

slightly more intelligent alternative to the 'Update!' button approach, would be to

detect the presence of the new message and simply present a notification to the user

that the portlet needs to be manually refreshed - but this would still be a very annoying

user interface design decision.

Thus, the messaging is asynchronous and also unreliable - a portlet window which is

never viewed will never read and react to a message sent to it. This is efficient and as

expected if we consider portlets as simple web pages and tools (interface components)

that are only of importance when the user wants to view them. However it does

highlight the point that portlets should never be treated as functional components of

an independent, back-end engine. Rather, it is wisest to treat a collection of interacting

portlets as pure GUI components, front-end widgets, which can each be used to initiate

back-end processes but do not in themselves make up an engine.

Thus for messages to be received, the Render phase must take place, which is usually

triggered when a portlet window is shown on a page. However, to improve

performance, some portals cache portlet render fragments (as permitted by JSR-168

Inter-portlet communication

124

PLT.18) until an explicit action is taken in a portlet, thus preventing the view-phase

reaction code from triggering. There is currently no way of informing a portlet window

that its content needs to be refreshed as a consequence of a message sent from a

different portlet. This is another disadvantage resulting from the lack of portal-level

support for IPC. The only workaround (other than the previously mentioned 'Update!'

buttons in every portlet) is to disable caching for the receiving portlets by setting their

'expiration-cache' to zero in the portlet deployment descriptor: this may result in

significantly decreased performance. Thus, with caching turned off, it is even more

important to make Render code lightweight, and if this is not possible the portlet

developer may need to implement their own caching mechanism (e.g. storing re-used

data in the session).

5.2.3 Message Storage

A messaging system must provide a centralised point of access for messages, visible to

all portlets. For this, we must make use of shared message spaces which are provided

by or compatible with JSR-168.

5.2.3.1 Communication between portlets in the same portlet application

The best and easiest approach is to store messages in the APPLICATION_SCOPE

session (Figure 5.3), which is accessible by all portlets in that application. This is the

only easily-accessible shared storage place provided by JSR-168, so it is usually

recommended that portlets which need to communicate are packaged in the same

portlet application.

However, the issue mentioned in Chapter 2 concerning the sharing of sessions for

portlets and servlets may cause problems if servlets are expected to take part in portlet

messaging interactions. If the portlets and servlets in the same application do not see

the same session, as is the case with certain portal setups, they clearly cannot use it for

storing and sharing messages, and alternative external message stores (e.g. databases)

must be used.

Inter-portlet communication

125

Figure 5.3: Simple inter-portlet communication using a shared session attribute.

The Service Index portlet provides a list of services. Selecting a service from this

list makes its corresponding interface appear in the Service portlet. This is

implemented by storing the service path in a session variable, in the 'Application'

scope which is visible to both portlets.

Sometimes the PortletContext is mentioned as a possible storage place for shared

data. There is one PortletContext per portlet application, on which attributes can be

set, but - like ServletContext attributes - these are globally visible to all concurrent

user sessions and are therefore not appropriate for our intended IPC use cases.

5.2.3.2 Cross-context communication, Servlet/Portlet messaging

Web (and thus portlet) applications are kept strictly separate by the Servlet

specification, and do not share sessions. Without any JSR-168-provided shared space, it

is therefore necessary to use a common external message store that is visible to all

portlets, for example an EJB or database (Figure 5.4). This approach is more complex as

it requires the additional setup and maintenance of an external message store, so if at

all possible it is best avoided, by packaging communicating portlets within the same

application.

If communication between portlet applications is required, each portlet must be able to

access an identifier representing the user's whole portal session, not just the session ID

Inter-portlet communication

126

for that portlet's application (which may differ across applications). A suitable

identifier for the portal session may be retrieved through PortletRequest.

getRequestedSessionId() , but this will only be available once the client browser has

agreed to take part in the session, and will therefore not be accessible on the first portal

page a client visits. Section 7.3.2.5 mentions some other approaches, but none are

completely satisfactory.

Figure 5.4: Cross-context communication relies on an external message store

and a known portal user session ID to connect the different portlet applications.

Inter-portlet communication

127

5.2.4 Configuration

When developing a portlet which sends a message, some configuration must be done

so that the message can be addressed to its receiving portlet(s). In many of the portal-

specific solutions, the ID of the target portlet window is the configuration parameter

required, and custom tools are often provided to ease the configuration process. In our

"Message Board" model, the public message name is the parameter to be configured,

and must match in both sending and receiving portlets.

The simplest level of configuration is to hard-code the message names (or target portlet

window ID) in the portlets' code. For message names, this may result in naming

clashes, and somewhat restrict the arrangement of portlets in portal pages. For target

portlet windows, this will tightly-couple the portlet implementation to the particular

portal page layout being used.

A slightly more flexible approach would be to define the message names/portlet

windows used in a configuration file (e.g. as initial parameters for the portlets in the

portlet deployment descriptor portlet.xml), which would allow the deployer of the

portlet application (the portal administrator) to modify the message names/portlet

windows used before the portal is started.

The greatest flexibility is provided by the ability to change the message names or target

portlet windows while the portal server is running, typically through a web interface

on the Portal itself. Both IBM WebSphere and Oracle Portal allow such configuration as

part of the page layout editing interface (Figure 5.5, Figure 5.6). This allows new

portlets to be added and communication channels to be dynamically configured at any

time during normal use of the portal.

Inter-portlet communication

128

Figure 5.5: IBM WebSphere's portlet "wiring" tool, a custom portlet that allows

the user to configure the "wires" between portlets on a page at runtime.

Figure 5.6: Oracle Portal's page editing mode, allowing message parameter

mappings to be configured.

Inter-portlet communication

129

5.2.5 Other features

There are several other notable features displayed by the portal-specific IPC

implementations examined:

Oracle Portal includes an intermediate area for messages: page or page-group

parameters, which can be used as variables to set input messages on many portlets at

once. An alternative implementation with the same effect is to permit a single portlet to

broadcast a message to many others, and the equivalent in our "Message Board" model

would be to have many portlets reading from a single named message, which would

correspond closely to the page parameter.

Some portals include redirection to a different page as part of the reaction to a portlet

event. Typically this redirect is to the page on which the receiving portlet lies. We

chose not include redirection as a feature in our IPC library implementation, although

portlets can still redirect to a different page in their Action phase. This is discussed

further in Section 5.4.

The type of data permitted in portlet messages varies from simple Strings to any Java

Object.

5.3 Design of a JSR-168-compliant IPC library

5.3.1 Requirements

Our main interest is communication within the same portlet application, as all

Discovery Net portlets are packaged together, and thus we will assume in the

following discussion that messages are stored in the APPLICATION_SCOPE portlet

session. However, in our actual portlet messaging implementation, access to the

message store is abstracted out and the implementation can be replaced if cross-context

messaging is required.

Hard-coding a pair of communicating portlets to check a known session attribute for a

message is the easiest implementation approach (Figure 5.3), and is appropriate when

the portlets are being developed for a site whose design is static (although maintenance

Inter-portlet communication

130

may become unwieldy if many communicating portlets are required, as the message

names must be kept consistent).

However in our portal scenario, we need to develop portlets as reusable components

that can be added in any quantity to any page, allowing communication channels

between portlet windows to be configured at runtime by the user. For example one

page may have a Service Index portlet window whose selections are displayed in a

Service portlet window on the same page, and a second page may have two more

Service portlet windows which the user has already configured to show two favourite

services. Selections on the Service Index should only affect its corresponding Service

portlet window, not the two on the other page. In addition, the user may be able to

construct their own new pages, and add further portlet windows, which again should

not necessarily interfere with existing communications.

Thus, in a changeable environment where many different types of portlets are sending

out many different messages, it should be up to the user - not the portlet programmer -

which messages the portlet window actually listens to or sends at runtime. Also,

ideally, the internal message identifiers used in each portlet's code should not have to

match those used in other portlets, nor should the portlet programmer have to worry

about naming conflicts with other portlets. For example, a Service Index portlet might

publish a selected service as a message named service_path , while a Service portlet

which works with it would look for the same service_path message to see which

service interface to display. However, the developer of a Userspace Item Viewer

portlet, which was capable of displaying the workflow behind a Service, might look for

the message item_path as input, to see which userspace item to display. Semantically,

the service_path and item_path are compatible: both are simply paths to items in

the userspace. However, as written, it would not be possible for the Userspace Item

Viewer to show a service selected from the Service Index, as the hard-coded message

names they are using do not match.

As a more advanced scenario, it is possible that a portlet may need to dynamically add

or remove message inputs/outputs at runtime, for example a Service portlet which can

switch between showing different services which have different numbers of inputs and

outputs.

Inter-portlet communication

131

We also need to support the situation where a user adds a new portlet window to a

page that uses as input a message which has already been sent (Figure 5.7). As we have

discussed, this is not possible with the Event/Listener model, but is supported by the

Message Board model.

Figure 5.7: Scenario where it is useful for a newly-added portlet to be able to

read an existing message. When the first service finishes, the user views the

result and decides that it should be processed further. They add a second service

portlet to the page, and configure it for the next service. At this stage, they need

to take the existing result from the first service and use it as input to the second.

In summary, we require our IPC library to combine the best portal-specific IPC

approaches with further features to support our flexible, dynamic portal scenarios:

• Provide an IPC API that is as convenient to use as portal-specific alternatives: it

must be easy to use in existing portlet code.

• Allow portlets in both the same and different webapps to communicate (cross-

context communication).

• Allow communication between portlet windows on the same or different portal

pages.

• Allow different mappings to be maintained for different portlet windows of the

same portlet instance (e.g. multiple Service portlet windows).

• Allow a single message to be sent to multiple receivers (e.g. A�B and A�C,

even A�A).

• Allow the portal administrator to hardcode mappings (for fixed portal page

layouts).

• Allow portal users to modify mappings at runtime.

• Allow portlets to receive as input a message that has already been sent (i.e. not

event-based).

• Allow mappings (portlet inputs/outputs) to be added and removed at runtime.

Inter-portlet communication

132

5.3.2 Design

To achieve these requirements we have developed a generic JSR-168-compliant portlet

messaging library which provides the necessary features and presents a simple

messaging API for portlet developers to use. To remain JSR-168-compliant, no portal-

specific code could be used, and some limitations were necessary. Nevertheless this

library meets our needs well, allowing our portlets to be written with clean code and to

communicate flexibly. It is provided as a standalone library and is freely available from

http://www.doc.ic.ac.uk/~mo197/portlets .

Throughout this discussion, it should be noted that the overriding requirement of this

design is JSR-168-compliance, and as a result it is not as efficient or robust as it might

be otherwise. The eventual portlet IPC system defined by the next portlet specification

will not have to work within these constraints, and will probably take an entirely

different form as a result, perhaps more similar to existing portal-specific

implementations.

5.3.2.1 Messaging Model

In our chosen "Message Board" model, portlets may publish named messages which

are then available to read at that message box name. Receiving portlets do not by

default consume messages but only read them, so that other portlets may also read the

same message. The messages persist until they are explicitly overwritten, so that any

newly added or loaded portlets can read previously published messages. Thus these

messages act as shared state indicators, rather than discrete events. A disadvantage of

this approach is that the receiving portlets must themselves maintain a history of

messages if they need to detect when a message has changed.

To avoid the problems of hard-coding message names, and to permit users to configure

messaging channels between portlet windows at runtime, we have added a translation

layer (a Message Broker[137]/ Mediator[134]) between the internal message names used in

portlet code and the public names of message boxes visible at runtime to all portlet

windows. Thus, in its own code a portlet may refer to a particular output message as

"path", but in the portal, the message box to which the message is sent may be

configured by the user, e.g. to "Service path for page 1". Similarly, the user can

Inter-portlet communication

133

configure the names of message boxes from which the portlet reads each of its input

messages. This process of message mapping allows both 1:1, and 1:N messaging

(Figure 5.8), as every message channel includes an intermediate message box. It does

not however support N:1 mappings, e.g. combining 2 boxes into 1 input, or 2 outputs

into 1 box. In practice, this approach to abstraction is similar to Oracle Portal's use of

'page parameters' (5.1.3), although less strictly scoped.

Figure 5.8: Abstraction of message names. The messaging library mediates

access to shared messages, allowing mapping of local names (hard-coded in

portlets) to global names (user-configurable at runtime).

5.3.2.2 Configuration

As previously discussed, configuration of IPC may be performed, with increasing

levels of flexibility, at:

• Portlet programming time (in code or configuration files)

• Portlet deployment time (in default or initialisation portlet parameters)

• Page development time (with custom tools or through a web interface on the

Portal)

• Runtime (through a web interface on the Portal).

The latter, most flexible, option is what we require.

Inter-portlet communication

134

Approach Advantages Disadvantages

1. Configure in

each portlet

Mappings are kept together with

their portlet (intuitive.) Efficient, as

mappings are only loaded when a

portlet window is first viewed.

Need to edit and save every portlet

involved in the communication -

potentially cumbersome

2. Configure in a

single "wiring tool"

portlet

All mappings can be edited and

seen at once - fast.

More complicated for user, if there

are many mappings visible. All

mappings are stored in a single

portlet, which would need a way of

accessing information about all the

portlet windows in the portal.

Table 5.2: Approaches to storing IPC configuration: GUI presentation.

Approach Advantages Disadvantages

1. Store in portlet

preferences

Easy to implement, JSR-168

mechanism. Flexible: configuration

can be set as default preference

values by the administrator upon

deployment, or by the user at

runtime.

Each portlet window must be

instantiated/viewed to load its

configuration from the preferences,

so other portlets will not be aware

of its mappings until then.

2. External to

portal

All portlets can access the full

configuration at any time. Supports

cross-context communication.

Extra work and dependencies in

setting up and managing an

external store.

Table 5.3: Approaches to storing IPC configuration: storage location.

The possible approaches to storage and configuration of the message mappings are

summarized in Table 5.2 and Table 5.3. While a single "wiring tool" portlet would be

the most elegant approach for configuring message mappings (and is the usual

approach taken by custom IPC implementations) it is not possible to implement

effectively without portal-level support for retrieving a listing of all portlet windows

on the site. Therefore we must spread out the mapping configuration among the

portlets to which the mappings belong: allowing configuration of each portlet's input

and output mappings in its own Edit mode. For storage of mappings, we decided to

use the portlet preferences, as a simple and flexible mechanism which allows values to

be set both upon deployment and at runtime by the user. However, we additionally

Inter-portlet communication

135

propagate the mappings to a centralised Message Store when the portlet first loads,

and in this way can optionally support cross-context communication by providing an

externally-persisted Message Store implementation.

To achieve this, the portlets delegate to a shared Message Helper in the application

session to publish and read all messages (the Message Helper in turn delegates to a

pluggable Message Store). When a portlet first loads, it registers its inputs and outputs

through the Message Helper, and from then on the Message Helper refers to and

modifies these local-to-global message name mappings as required. The mappings are

defined and saved in each portlet's parameters, using the standard parameter

persistence mechanism, and may be modified in each portlet's Edit mode. A simple but

generic implementation of this edit mode is shown in Figure 5.9: the interface is

dynamically generated by inspection of the messages in the Message Store and the

current portlet's messaging configuration.

The main disadvantages of this approach are:

1) Both ends of a communication channel must be separately configured: both the

sending portlet's output mapping and the receiving portlet's input mapping.

2) Existing mappings (e.g. available output messages) will only be included in the

configuration dialog after their parent portlet window has been rendered in the

user's current session at least once.

The user interface for IPC configuration could potentially be improved greatly using

AJAX[27], but unfortunately this is not possible with JSR-168: AJAX requests, which call

servlets, cannot access portlet window services such as portlet preferences, in which

the messaging configuration is stored. If however the configuration were to be stored

externally (e.g. in a database), an AJAX configuration GUI would be feasible.

Inter-portlet communication

136

Figure 5.9: Dynamically-generated mapping configuration forms, accessible in

the portlet's Edit mode at runtime. Two portlets are shown, the first configured

to publish messages, the second to read them.

Inter-portlet communication

137

5.3.2.3 IPC Library Code

Figure 5.10: UML diagram of the IPC Library

Inter-portlet communication

138

Figure 5.11: Concrete implementations of the MessageStore and

SessionIDRetriever interfaces, included in the library.

Inter-portlet communication

139

Figure 5.10 shows the components of the portlet messaging library. The main class

intended for direct use by portlets is the MessageHelper , which provides a simplified

interface appropriate within the context of a portlet window. The MessageHelper

allows portlets to refer to both incoming and outgoing messages by their own local

names, with no explicit reference to the mapping that eventually happens at runtime.

The MessageHelper must first be initialised with the portlet window's ID, but from

then on it will be able to automatically translate each local name to an appropriately

namespaced or mapped MessageBoxKey , which is the message's global unique name.

The MessageHelper then passes on (or fetches) the message to the MessageCentre

(and hence MessageStore), which acts as a centralised point of access for both

messages and message mappings. Example code that could be used in a portlet's

processAction and doView functions is shown in Figure 5.12.

a)

public void processAction (ActionRequest request, ActionRespon se actionResponse)
throws PortletException, java.io.IOException {

 PortletSession portletSession = request.get PortletSession(true);
 String id = getWindowID(request);
 String msg_session_id = MessageHelper.getSessionID(reques t);
 MessageHelper helper = new MessageHelper(portletSession, id, msg_session_id);

 String myAuthor = request.getParameter(" myAuthor ");
 helper.send(" author ", myAuthor);
}

b)

public void doView(RenderRequest request, RenderResponse respo nse)
throws PortletException, IOException {

 PortletSession portletSession = request.get PortletSession(true);
 String id = getWindowID(request);
 String msg_session_id = MessageHelper.getSessionID(reques t);

 // load this portlet's inputs and outputs from pref erences
 MessageHelper.loadPrefs(request, id, msg_se ssion_id);

 MessageHelper helper = new MessageHelper(portletSession, id, msg_session_id);
 String broadcastAuthor = helper.getAsString(" author ");

 ...
 writer.write(" Selected author: "+broadcastAuthor);

Figure 5.12: Code fragment showing the use of the IPC library to a) send a

message in one portlet b) receive a message in another portlet.

Inter-portlet communication

140

When implementing portlets that use the IPC library, the portlet developer must

include the messaging library JAR in their portlet application, but does not need to

make their portlets extend from any special portlet class. Rather, they can treat the

messaging library as a separate service to be loaded and called when needed. Of

course, as it is not a standard, only portlets which have been designed to use this

messaging library will be able to communicate with each other.

When initially loading the MessageHelper , it is necessary to read in the message

mappings from the portlet preferences. This is best done in doView , as this will ensure

that the MessageHelper is properly initialised as soon as the portlet is first displayed.

Once loaded, the mappings are cached in the session, so that subsequent calls to

MessageHelper.loadPrefs in doView do not add more overhead.

As previously mentioned, and shown in Figure 5.12, the portlet developer must

provide a portlet ID to uniquely identify the portlet window to the MessageHelper .

The portal's ID for the portlet window is not directly accessible through JSR-168, but

workarounds are available as discussed in Section 7.3.2.4, and the MessageHelper

provides several functions which can be used to retrieve or generate an appropriate

window ID.

The exact implementation of MessageStore used is easily configured through a

properties file. Hence for example support for cross-context communication with an

external MessageStore can be configured without recompiling the portlet code. In

addition, the implementation of the SessionIDRetriever is also configurable, due to

the issues mentioned in Section 7.3.2.5, and can be used through the MessageHelper as

shown in the example code. The configurable parts of the messaging library are

illustrated in Figure 5.11 and Figure 5.13.

Thus, the use of the portlet messaging library is split into two parts: first, the code for

sending and retrieving messages in the portlet, which uses the local input/output

message names, and second, the configuration of message mappings to set up message

flows, which can be done either in the default portlet preferences (e.g specified in the

portlet deployment descriptor, portlet.xml), or at runtime by modifying preferences

of individual portlet windows programmatically.

Inter-portlet communication

141

Portal Server

Portlet Application
Portlet Application

- Portlet Window ID

Portlet

EJB Container

EJB Message Store
Core Messaging Library

SessionIDRetriever

MessageStore

IPC Library

Figure 5.13: Some components of the IPC library can be easily replaced with

different versions most appropriate to the situation.

5.4 Page Navigation

As previously mentioned, navigation between pages is often a desired side-effect of

sending messages, usually to visit the page which contains the portlet receiving the

message. There are a few problems that make the implementation of this feature

difficult.

One technical restriction is that a portlet can only change the page (by sending a

'redirect' instruction to the client browser) in the Action phase, as this is the only time

that it has access to page headers. Thus, messages sent from a Render phase (as might

be done in response to receiving a message) will not be able to trigger page changes.

This means that IPC-triggered page changes can only happen with primary messages,

sent directly as a result of a user's click - which will probably usually be the desired

case anyway.

Secondly, there is the problem of configuring the address of the page to redirect to.

This address is entirely situation-dependent, and will be different for each portal

implementation, and each website layout. Currently, the user must always look up this

address and configure it manually in every instance of the portlet. Even in the case

where we know Portlet A always sends the message to Portlet B, and wishes to

Inter-portlet communication

142

automatically navigate to the page containing Portlet B, there is no way for the portlet

code to find out the target page address using the Portlet API. Ideally, we would want

to be able to present (at runtime) a user-friendly configuration interface in the portlet

itself, allowing users (or just page designers) to select the target page from a list of all

available portal pages. But again, due to the lack of a portal-context-inspection API (as

discussed in Chapter 7), this is not possible without using portal-specific code, and

instead we are forced to require the user configuring the portlet to find out and type in

the full target page URL themselves.

The page-navigation feature is not currently included in our Portlet Messaging Library,

due to these technical and design issues. However, they are not critical and may be

acceptable if the need is great enough and the limitations are made clear, so this feature

may be introduced in the future.

5.5 Limitations of the IPC library

The restrictions of the IPC library are mainly due to the limitations of working within

JSR-168, and so cannot be practically resolved at this time. These include:

• Sending messages in the Action phase (not mandated, but highly

recommended).

• Receiving messages in the Render phase (thus view caching must be disabled

for receiving portlets).

• No explicit support for message chaining.

• Requirement to obtain an ID for each portlet window.

In addition, the current interface for modifying message mappings in the IPC library

could be made much simpler to use and understand. A more intuitive presentation

would be to allow the user to click & drag to connect outputs to inputs, using

JavaScript. Implementing such an interface would have to overcome several concerns:

a) an intuitive GUI would need to be developed allowing the user to configure

messaging between portlet windows on different pages, b) portlet preferences on more

than one portlet window would need to be saved to create a single connection, which

would require multiple 'update/save' requests to the portal.

Inter-portlet communication

143

Such a messaging configuration interface would be possible using AJAX, but would

first require some additional portal features:

• Centralised support and management of message mappings.

• A method permitting servlet endpoints independent access to portlet windows

(e.g. for background-saving of portlet window preferences using AJAX).

• Reliable consolidation of servlet and portlet sessions.

• Methods to retrieve details of other portlet windows present in the portal,

including those which have not yet been visited by the user in the current

session.

5.6 Conclusion

In this chapter we have introduced the topic of inter-portlet communication and

discussed its implementation in different portals.

As one of the main contributions of this thesis, we have described the design and

implementation of a JSR-168-compliant IPC library. This library is available for

download at http://www.doc.ic.ac.uk/~mo197/portlets . The first release was in

July 2005, and a version supporting messaging between portlets in different portlet

applications was released in September 2005.

Despite the limitations described in Section 5.5, our library still provides a portable,

flexible and easy-to-use implementation of IPC for JSR-168 portlets, as a viable

alternative to portal-specific solutions. In summary, the IPC Library's features are:

• Simple API

o Messages are public and have a two-part identifier: namespace + name.

o Message contents may be any Java object

• Flexible, loosely-coupled communication between portlet windows

o Configuration in portlet.xml default preferences, or through editing

portlet preferences at runtime

• Messaging within or across portlet applications

Inter-portlet communication

144

• Pluggable Message Store for different concrete implementations

Portal-specific IPC systems are still generally superior for reliability and integrated

messaging, however our library has several advantages which not all portal-specific

solutions support:

• Portability through JSR-168 compliance

• Choice of static or run-time message configuration

• Development of completely decoupled messaging portlets

• Late binding to message channels (due to the lack of a strict Event/Listener

system)

Future developments for the IPC library will probably include support for page

navigation alongside sending messages. While this is not a concept that is strictly tied

to messaging, it is a commonly-associated and often-requested parallel feature.

In the process of developing this library, we encountered a number of general

limitations with the JSR-168 specification which we have detailed in Chapter 7 and

provided as input to the working committees for the next versions of the Portlet and

WSRP specifications.

While the focus of this work has been on JSR-168, the WSRP specification is closely

related, and so the discussion of messaging models is also relevant to the programming

language-independent portlet environment described by WSRP.

In the next Chapter we will describe the development of a real-world portal for

Translational Medicine, in which both inter-portlet communication and the Discovery

Net Service portlets are fundamental components.

Translational Medicine Portal

145

Chapter 6. Translational Medicine Portal: A Case
Study of a Complex Portal

In this chapter we illustrate the concepts which have been explored in this thesis so far,

with the development of a real-world analytical portal composed out of

communicating JSR-168 portlets. This puts into practice the work done in developing

the Discovery Net portlets (Chapter 3) and the IPC library (Chapter 5).

The Windber Translational Medicine Portal project is the only one of the applications

examined so far that has been developed for production use. The project started in

September 2005 and is ongoing; its first production release was in February 2006.

6.1 Aims of the Portal

The intention of this project was to create a web portal which provides both researchers

and clinical physicians with access to the archive of patient data that has been built up

by the Windber Research Institute[86] over many years.

The first aim was to allow users to interactively explore the available data (initially

concentrating on data from a breast cancer study) using summary views, drilling-

down through clinical records and questionnaire answers, and selecting groups of

patients for follow-up analysis or studies (for example: all patients on a particular

medication, who have shown particular symptoms).

Secondly, being able to navigate from the broad overview of aggregated data down to

view the detailed clinical data for specific patients in the selected categories was to be a

critical feature for this portal. Thus after selecting a set of patients, the researchers

needed to be able to both retrieve the details of the patients within that set, and use the

set as input to analysis workflows for further research.

Translational Medicine Portal

146

6.2 Design Challenges

The Discovery Net server and portlets were clearly suitable for the analysis part of the

project, allowing researchers to produce analysis workflows and deploy them to the

web. However, the ability to browse the patient data was an entirely new application,

which we will therefore describe in some detail.

The ability to browse aggregate statistics summarising the contents of a data

warehouse is provided by Business Intelligence products using OLAP (On Line

Analytical Processing), e.g. Oracle Business Intelligence Discoverer[65]. Typically, such

products allow users to view pre-configured or customisable tables of statistics, drill-

down to view statistics for subsets of data (e.g. sales figures for a particular month),

and generate graphs; Figure 6.1 and Figure 6.2 show this in Oracle Discoverer.

However, most OLAP systems were unable to provide the second requirement: the

connection from the aggregate results back to the individual data points which

originally made up those results. For efficiency, these systems rely on pre-calculated

statistics (stored as ‘cubes’), and maintain no connection back to the source data.

We therefore took the approach of developing our own OLAP-inspired system. The

patient data under consideration was reasonably small and unlikely to increase rapidly

in size, compared to the massive data warehouses which make pre-calculated OLAP

cubes necessary. This allowed us to perform all calculations in real time, directly using

the source data, which simplified development and ensured that the most up-to-date

information would always be used. The resulting system was able to retrieve both

aggregated information and the corresponding underlying records.

The database setup, data cleaning and import was an important part of the process,

managed by database experts at InforSense and Windber, who also created an interface

class (DatabaseProvider) for all access to the database. My responsibility in this

project was all parts related to the web portal: the binning web interface, the OLAP-like

browser, patient set management and patient viewing. Each of these functionalities

was implemented as a JSR-168 portlet, for later inclusion alongside the Discovery Net

portlets in a portal (we used the Jetspeed 1.6 portal embedded in the Discovery Net

server installation). Figure 6.3 shows an overview of the whole project.

Translational Medicine Portal

147

Figure 6.1: Oracle Discoverer allows users to view statistical summaries of large

amounts of data, through a web interface. Here, a simple table is shown, with

one variable, "Hypertension", which has three possible values, each represented

by a row. The "Incidence Count" column shows the result for each row. A pie

chart shows the same data. (Image from Oracle documentation[26])

Translational Medicine Portal

148

Figure 6.2: Oracle Discoverer showing a more complex table which contains

two categories as rows ("Region" and "Prod Category"), and one category

("Quarter") as four columns (Q1-Q4). The two categories shown as rows are

hierarchical; the second category is nested beneath the first. Users can add

additional levels of categories to further subdivide each row. (Image from

Oracle documentation[26])

Translational Medicine Portal

149

Figure 6.3: Overview of the Windber Translational Medicine portal.

Translational Medicine Portal

150

6.3 AJAX (Asynchronous JavaScript And XML)

The web tools developed for this project make extensive use of the AJAX[27] style of

web development, which allows pages to be unusually responsive and interactive. This

method uses JavaScript on the client to communicate directly with the server while the

user is reading the page, retrieving information in the background in response to user

actions. JavaScript is then used to update the displayed page’s contents, modifying its

Document Object Model (DOM) directly; thus the page does not need to be reloaded in

full from the server for every small change, as would be necessary without AJAX.

The AJAX approach requires an endpoint on the server for the JavaScript to fetch

(usually a dynamically-generated page which takes query parameters). In the context

of Java web servers, this endpoint would typically be a servlet or a JSP.

Figure 6.4 shows the process of requesting and displaying a normal (non-AJAX) web

page, which may be compared with the modified sequence using AJAX in Figure 6.5.

Figure 6.4: Interactions on a normal web page (not using AJAX).

Translational Medicine Portal

151

Figure 6.5: Interactions on a web page using AJAX. Based upon a diagram from

the IBM developerWorks article "Ajax for Java developers: Build dynamic Java

applications”[160].

Translational Medicine Portal

152

6.4 Portlets developed

A number of custom portlets were developed to meet Windber's specific requirements,

and are discussed below. These JSR-168 portlets use the portlet messaging library

(Chapter 5) to communicate with Discovery Net portlets, and so were deployed, for

convenience, within the same portlet application as the Discovery Net portlets. They

could have been deployed in a separate portlet application, but it would then have

been necessary to set up an external message store for cross-context communication,

which we considered an additional complexity worth avoiding.

6.4.1 OLAP Browser

The OLAP browser presents an interactive tabular view of the data, and also allows

users to generate bar charts as an alternative visualisation.

Categorical attributes (or binnings), which we will refer to as categories or dimensions,

can be added to the table as sets of rows or sets of columns, with an entry for each

possible value of the category. If both rows and columns contain categories, the

resulting table is a cross-tabulation (crosstab) where each data cell contains the

intersection of a pair of category values.

"Measures" are numerical aggregate values, calculated over a particular set of data, and

define what information is shown in the table. A measure is defined by an aggregate

function applied over a numerical attribute. For example, the record Count

("Count(CBCPNum)") or average Age ("Avg(Age)").

Typically, a user will add a category as a set of rows (one row for each possible

category value), and several columns containing numerical measures (Figure 6.8 shows

the configuration of rows and columns, and Figure 6.6 shows the resulting table). The

data cells in the table will then show the measures corresponding to each row. Each

cell can retrieve its data using a unique database query, made up of the measure and

the row information which effectively acts as a filter (e.g. "Avg(Age) WHERE

Occupation='Teacher'"). Users may also add categories as columns, where a single

category results in a group of columns being added to the table, one column for each

Translational Medicine Portal

153

possible category value (Figure 6.10). When adding a categorical column, the user must

additionally specify a measure as usual. The resulting crosstab changes the way each

data cell constructs its query: the filter for selection now includes parts from both the

row and the column.

Users may view the data from any row in the table as a graph (Figure 6.7), or export

the underlying raw data (Figure 6.9).

Figure 6.6: The OLAP browser showing a single category (‘Education’) as rows,

and several columns with numerical measures. A single row category can also

be visualised using a graph, showing the data for one column (Figure 6.7).

Translational Medicine Portal

154

Figure 6.7: The information in the OLAP table can also be viewed graphically.

\

Translational Medicine Portal

155

Figure 6.8: Configuration of rows and columns in the OLAP browser.

Translational Medicine Portal

156

Figure 6.9: The raw data records (individual patients) underlying each OLAP

browser row.

Figure 6.10: The OLAP browser showing a single category as rows, two

numerical columns, and a single categorical column (a group of columns),

resulting in a crosstab.

Translational Medicine Portal

157

This basic layout is enhanced by the ability to "drill-down" into rows: users may

expand a particular row of interest and add an additional category beneath it as a new

set of rows (Figure 6.11). In early prototypes of this system, users would select a

category to expand before expanding any row, and in this way different categories

could be shown at the same 'level' of the graph: e.g. with a top level category of

‘Occupation’, the "Occupation=Teacher" row could be expanded to show ‘Exercise’, while

an "Occupation=Housewife" row might be expanded to show ‘Education’. This allowed

complete flexibility in viewing data, but the Windber researchers found it too complex

and suggested a simpler approach. Rather than allowing full choice with every

expansion, they preferred to define a ‘hierarchy’ of rows once, which would fix which

categories should be expanded at each level. For example, a row hierarchy containing

"Education� Exercise� Exercise Frequency" would ensure that all expansions of

‘Education’ rows would result in a nested set of ‘Exercise’ rows, and then any

expansions of ‘Exercise’ rows would expand to show nested "Exercise Frequency" rows

(Figure 6.11, Figure 6.12).

Thus, users can select attributes and construct measures of interest to create their table,

and drill down through the row hierarchy to examine the aggregate information about

groups of patients with particular attribute values. They can also customise details of

the table display, hiding rows and columns or re-ordering them.

Once the user has identified an interesting group of patients, they can then select the

corresponding row, which is defined by a simple "select" query appropriate for

accessing the database (e.g. "Ethnicity='White' AND Age_binning='40-50' AND

Exercise_Frequency='Once a week'"). This process is the only one which results in a full

portal page reload: this is so that the select query can be passed along by the portlet

code to the Patient Sets portlet, using the portlet messaging library. Patient Sets, each

defined by a select query, can then be used on other portal pages – e.g. to view the

details of their contained patients, or to use sets of patients as input to a workflow.

Translational Medicine Portal

158

a)

b)

Figure 6.11: Defining and displaying a row hierarchy in the OLAP browser.

a) A row hierarchy configured with two categories.

b) Expanding an "Exercise" row to show information for the second category in

the hierarchy "Exercise Frequency".

Translational Medicine Portal

159

Figure 6.12: Multiple levels of row expansions, governed by the row hierarchy

(shown above the table).

The OLAP browser uses AJAX to allow the table presented in the web browser to be

very responsive and interactive. JavaScript is used to asynchronously fetch data in the

background and update the table on the page, without reloading the page from the

server. Thus the methods mentioned above of constructing database queries for each

cell are useful; each table cell has its associated query sent to the portal server, and

updates immediately when its result is received. Users can view the result in each cell

as soon as it arrives, rather than waiting for the entire table of data to be calculated and

rendered in a single page request.

Translational Medicine Portal

160

The OLAP browser was developed as a set of JSPs, as it was meant to be accessible

independently of the Jetspeed portal. A simple wrapper portlet was developed which

embedded the interface into the portal page using an IFRAME.

The display state of the OLAP browser (the table layout: its columns, the row

hierarchy, its expansion state, and the ordering and visibility of rows and columns)

was preserved in the session, so when users navigate to a different page on the portal

and later return to the OLAP browser, it shows the table exactly as they last left it.

Display persistence was also necessary when generating a CSV export of the table,

which needed to be identical to the table layout seen in the portal. Whenever the

display state changes as a result of AJAX requests, AJAX was also used to update the

state in the session. An alternative persistence approach well-suited to AJAX

applications is to store state in a client-side cookie, but in this case the information

needed to describe a complex table layout was potentially too large (cookies have a

maximum size of 4KB).

6.4.2 Binning

A binning helper application was developed to allow the user to customise the data for

their needs.

The underlying data consists of a number of patient records, each patient identified by

a unique ID (‘CBCPNum’ in the screenshots). Associated with each patient may be any

number of questionnaires and items of clinical data (e.g. tissue sample test results). In

this phase of the project, it was considered acceptable to view this as a flattened record:

every questionnaire answer or test item can fundamentally be viewed as a simple

attribute of the patient.

Attributes (e.g. a questionnaire item) can be either numerical (e.g. ‘Age’, with

continuous values) or categorical (e.g. ‘Occupation’, with a set of possible values). Both

numerical and categorical attributes can be binned, and a binned attribute is by its

nature categorical (e.g. ‘Age’ may be split up into 4 bins, of <30, <50, <70, 70+). It can

also sometimes be useful to apply binnings to categorical attributes to simplify them, as

these may contain free-form answers with many semantically similar values, e.g.

‘Teacher’, "Primary school teacher".

Translational Medicine Portal

161

A web interface was developed allowing users to create new binnings on columns, and

perform a limited number of other administrative functions (e.g. indexing). The

binning pages are shown in Figure 6.13 - Figure 6.17.

Figure 6.13: The binning interface begins by showing the list of columns in a

chosen table. Each column can be expanded to show its corresponding binnings,

if any, and the binnings can be created or managed from here.

Figure 6.14: The wizard for creating or editing binnings. These can be initially

created using an algorithm or by copying an existing binning.

Translational Medicine Portal

162

Figure 6.15: Interface for manual customisation of bins, for a numerical column.

Figure 6.16: Interface for manual customisation of bins, for a categorical

column.

Translational Medicine Portal

163

Figure 6.17: The binning wizard ends with a visualisation of the bin contents.

The binning web interface was developed as a set of JSPs, as it was meant to be

accessible independently of the Jetspeed portal. These JSPs use AJAX for improved

responsiveness and interactivity (e.g. in retrieving the binnings for a column: these

binnings are fetched using AJAX and inserted directly into the page, rather than

having to reload the entire page and re-render the full column list– or, alternatively,

fetching the binnings for all columns when the page loads).

A simple wrapper portlet was developed which embedded the binning interface into

the portal page using an IFRAME.

Translational Medicine Portal

164

6.4.3 Patient Sets portlet

The Patient Sets portlet is a dedicated JSR-168 portlet (it cannot be accessed outside the

context of the portal), which acts like a "shopping basket" of available patient sets

(Figure 6.18). Any patient sets selected by the user in the OLAP browser will be added

to the list of sets in this portlet. Patient sets can be permanently saved to the database,

or simply used in the current portal session. The core of a patient set is the database

query which can be used to retrieve the set; each set also has an associated name and

description.

This portlet has a number of display modes, appropriate for different portal pages

(Figure 6.19). It uses the portlet messaging library to communicate with other portlets:

it can send the selected patient ID to the Patient Viewer portlet, and patient set queries

as input to Discovery Net Service portlets.

Translational Medicine Portal

165

Figure 6.18: Patient Sets portlet, allowing sets to be saved, edited and deleted.

a)

b)

Figure 6.19: Patient Sets portlet.

a) allowing sets to be expanded to show patients within them. An individual

patient ID can be selected for use in another portlet.

b) allowing selection of sets for use in other portlets.

Translational Medicine Portal

166

6.4.4 Patient Viewer portlet

The Patient Viewer portlet displays fully detailed information for a selected patient. At

the moment, this display is quite raw (Figure 6.20), simply displaying the attributes as

a table of key-value pairs. Further development work will focus on an interface to

explore and present this data.

Figure 6.20: The Patient Viewer portlet displays the clinical data for a specified

patient. It may be configured to receive patient ID messages from a Patient Sets

Portlet, and also allows users to select patients by specifying the patient's ID

directly.

6.4.5 Discovery Net Services

The Discovery Net Service portlet was easily included on portal pages and connected

with the Patient Sets portlet using the messaging library (Figure 6.25). This uses the

mechanism for reading in messages as service input parameters described in Chapter

3.

At this time, real analysis workflows are still under development by researchers at

Windber, but the concept is proven, and services should be made available in later

releases of the portal.

Translational Medicine Portal

167

6.5 The Translational Medicine Portal

The final portal contains several pages, shown in this section. The OLAP browser

currently provides the bulk of the functionality, allowing users to explore data and

construct tables of interesting attributes (Figure 6.21). The data may be exported to

Excel for further manipulation. Advanced users can create and modify binnings to

customise the data (Figure 6.22). Interesting sets of patients which match the selected

attributes can be saved for use elsewhere in the portal.

The Patient Viewer page displays detailed information on a selected patient – either

chosen from within a patient set, or looked up by patient ID (Figure 6.23, Figure 6.24).

Finally, researchers can also use deployed workflows (Discovery Net services) in the

portal, optionally using patient sets as inputs (Figure 6.25).

Figure 6.21: The OLAP browser page. Selections from the OLAP browser are

stored in the Patient Sets portlet.

Translational Medicine Portal

168

Figure 6.22: The Binning page.

Translational Medicine Portal

169

Figure 6.23: A Patient Viewer page, allowing users to specify a patient ID to

view.

Figure 6.24: A Patient Viewer page. The Patient Sets portlet allows each patient

set to be expanded to show the patients contained within. These patients may

then be selected and shown in the Patient Viewer portlet on the same page.

Translational Medicine Portal

170

Figure 6.25: A workflow page. The Patient Sets portlet allows each patient set to

be selected, for use as input to the workflow.

Translational Medicine Portal

171

6.6 Conclusion

The concept of an analytical portal was entirely appropriate for the needs of Windber's

researchers, and was so successful that it extended the project well beyond its original

conception, which was 'simply' a rebuild of their existing data warehouse.

The use of the Jetspeed portal with both customised Windber and Discovery Net

portlets supports multiple stages of the analysis procedure. Researchers can go from

initial exploration of warehoused data (Figure 6.21), to selection of interesting subsets

of patients, to analysis of those patient sets to perform new research (Figure 6.25) - all

within the same Portal environment. The Discovery Net Java Client need only be used

for initial creation and editing of the analysis workflows.

The integral portal services for page management and security also proved useful: first

in the rapid development of the custom pages making up the Translational Medicine

portal, and then in restricting access permissions on certain portlets and pages, so that

external research partners could be given access to the OLAP browser, but not to the

confidential individual patient information.

This project also demonstrated the usefulness of the IPC library (Chapter 5), in first

developing the communicating Windber portlets, and then allowing the new Patient

Sets portlet to provide input to Discovery Net Service portlets. The shared message bus

provided by the library allowed the portlets to be easily developed as independent but

interoperating components.

In summary, the portal/IPC approach allowed us to provide:

1. A user friendly web-based research solution

2. Independent development of portlets customised to the client’s needs

3. Easy integration through IPC with Discovery Net services in the same portal

4. Rapid development of portal pages

However there was one aspect relating to the custom portlet implementation which

was less than ideal: the method of integrating a rich AJAX-based web application

Translational Medicine Portal

172

within a portlet. We approached this by embedding the complex, non-portlet

application within an IFRAME – however this has the effect of framing the application

within a fixed size box on the page, with its own scrollbars. This was not popular with

the users, but the alternative of developing a rich web application completely within a

JSR-168 portlet was problematic from a development point of view. The limitations of

using AJAX within JSR-168 portlets are discussed in detail in the next chapter.

Work is expected to continue on the Translational Medicine portal for some time, to

customise it with interfaces specific for patient data (e.g. using timelines as a way of

visualising information over a patient's lifetime), and expand the current tools to allow

appropriate treatment of data with a time component. The current generic OLAP

browsing technology will also be examined for use by other customers in other

application areas.

Limitations and Improvements for JSR-168 portlet technology

173

Chapter 7. Limitations and Improvements for
JSR-168 portlet technology

Developing portlets to the JSR-168 portlet standard[16] is a good practice as it widens

the choice of portals to which they can be deployed, avoiding vendor lock-in. However

there are several limitations involved in developing JSR-168 portlets. Many of these

issues have workarounds (of varying effectiveness). We discuss these limitations and

their workarounds in detail in this chapter.

The next version of the portlet specification (JSR-286[106]) is currently in progress. The

new standard will address many of the features lacking from the original specification,

and hopefully also some of the additional limitations described below.

As a result of the research detailed in this chapter, we have summarised the most

important issues and submitted a list of topics and potential improvements for

consideration to the JSR-286 expert group (Section 7.4). The closely related WSRP 2.0

specification is also in development, and any new features will be coordinated between

both specifications, whenever relevant.

In this chapter, references to specific parts of the Portlet Standard JSR-168 and the

Servlet Standard[13] will be prefixed by ‘PLT.’ and ‘SRV.’ respectively.

7.1 Context

When considering the limitations of JSR-168 portlets, we must first explain what we are

comparing it against.

WSRP describes a language-independent method of accessing remote portlets.

However in practice, the vast majority of portlet implementations have been in Java,

Limitations and Improvements for JSR-168 portlet technology

174

using the JSR-168 specification. Two exceptions are “Go-Geo!”[93] using Perl, and

NetUnity[24] using .Net.

In comparison to other, non-JSR-168 portals, the limitations would therefore focus

mainly upon those features left out of JSR-168 and the differences between Java and the

technology (Perl, PHP etc) used by the other portals. There are numerous different web

technologies and frameworks, and a full comparison is well beyond the scope of this

report. The final choice of web technology is often made based upon the developers'

experience and preference for the underlying framework or language used, or

mandated by existing infrastructure, both of which are entirely practical, but not

considerations that can be addressed as part of a Java specification.

We will therefore consider JSR-168 primarily in the context of Java web server

technologies, the core of which is J2EE[11] and Java Servlets[13] but which also includes

non-JSR-168 Java portals. JSR-168 portlets are very similar to servlets, but differ in

numerous ways[173] which are described in detail in Section 2.6.1.3. Many of these

differences are what lead to the problems and limitations in the way portlets can be

used - particularly from the point of view of a servlet developer migrating to use

portlets.

7.1.1 Other Java Portals

Non-JSR-168 Java portals based upon J2EE, such as earlier versions of Oracle Portal[66],

IBM WebSphere[46], and Apache Jetspeed 1[28], are the precursors to JSR-168 Portals and

each provide their own version of 'portlets' and accompanying portal services. These

portals are still in use by many sites, and most now support JSR-168 in their latest

versions, often in parallel with their own legacy portlet systems.

The portal-specific portlets often boast a wider array of features than those provided in

JSR-168 - for example, support for developing MVC[3] portlets (often with Apache

Struts), inter-portlet communication, portlet filters (discussed in detail later), and direct

use of portal services such as page layout. Use of these features is often very desirable

to portlet developers, but such portlets can only be hosted in the chosen portal

implementation and are not JSR-168-compliant. Although using portal-specific features

directly will always be more efficient and powerful, it is possible to get some of the

Limitations and Improvements for JSR-168 portlet technology

175

advantages of these advanced features without sacrificing JSR-168-compliance and

being locked down to using a particular portal. Where relevant, these workarounds

will be discussed below.

7.2 Limitations in Portal Design

There are some fundamental practical considerations in the design of portal pages and

portlet contents that are not specific to JSR-168, but apply to any Portal-like system.

Thus at an early stage of development it must be decided whether or not the aims of a

site are best met by the portal philosophy.

First is the concept of modularity in a website, and whether this is suited to the content

of a particular site. Modularity is clearly beneficial from the point of view of code

maintenance; however it may not be optimal for the site designers or end-users, as it

discourages direct cross-linking between modules. Such cross-linking between sections

can add significantly to the usability of the site, and is a convenience expected by end

users. Therefore, despite code modularisation, linking between sections is common and

often must be allowed for, usually by avoiding changes to document locations and

URL query formats whenever possible. This is manageable in sites where modules are

loosely-coupled and do not require extensive cross-linking - such sites will translate

well to a portal, as it should be quite easy to split up the functions into mostly-

independent portlets. On the other hand, if a site is tightly focused, and most of the

pages are closely coupled, it may not be necessary or worth the effort to use a Portal.

The next most significant design consideration in developing a portal site concerns the

core feature of allowing multiple portlets to be present on a single page. This means

firstly that all these portlets must be able to fit in the limited space available, and

secondly, that the page will take longer to generate and display than if it was only

showing one portlet at a time. Every time the user interacts with a portlet on the page

to submit a form or follow a link, the whole page must be re-rendered - this will

probably result in all the render code for all the portlets re-executing, even when the

user has only actually interacted with one of them. The Portal may support caching of

portlet views to improve performance (a portlet's cache 'expiration-time' may be set in

the configuration portlet.xml) but this support is not compulsory.

Limitations and Improvements for JSR-168 portlet technology

176

These issues must be taken into account by both the page designer (when choosing

which and how many portlets to add to a page), and by the portlet developer. The code

which renders the portlet should be idempotent and as lightweight as possible to speed

up page loading, and portlet content must be compact if the portlet is to share space

with other portlets. In addition, portlet and page designers must be particularly careful

to avoid overloading and confusing the user with too much complexity.

7.3 Limitations in Portlet Implementation

Having decided that the generic portal concept fits a website's aims, the choice of

portal technology will be dependent on the capabilities of the portal software and the

developers' skill set.

Here we discuss in detail the considerations and limitations involved in the

development of JSR-168 portlets, many of which will be encountered in the

development of any moderately complex portlets, and particularly when considering

conversions of existing servlet-based sites. Where relevant, we also include

workarounds and our solutions. These may be considered to be in addition to the

excellent "Best Practices" document by Stefan Hepper[173] which outlines the basic

differences in developing portlets compared to servlets.

7.3.1 Java-only

Although we will not go into a comparison between different languages available for

server-side page generation, it should be noted that the language restriction will

naturally make migrating an existing non-Java website to use JSR-168 portlets

considerably more time-consuming.

Workaround

There are some bridges available, notably Apache Portals Bridges[31], which allow an

existing non-Java application to be wrapped as a JSR-168 portlet. This can wrap PHP

and Perl applications and other native programs (e.g. MapServer[55]). Such bridges are

very valuable for exposing existing and legacy applications, but may not permit full

usage of portlet features (depending on the particular implementation).

Limitations and Improvements for JSR-168 portlet technology

177

Alternatively, for a non-JSR-168 but still standards-compliant approach, the portlets

could be developed using any language and then exposed as WSRP[14] (Web Services

for Remote Portlets) web services. Many portals now support WSRP portlets as well as

or instead of JSR-168.

7.3.2 Missing Portal Features

The JSR-168 specification (Section PLT.E) notes some features as missing, and to be

considered in a later specification:

• Portlet filters

• Inter-portlet, event style, communication

• Allow portlets to produce and influence markup outside of the portlet fragment

These features and others are discussed in this section.

7.3.2.1 Portlet Filters

The Servlet API[13] includes support for Filters (Section SRV.6), which wrap the

processing of an incoming request. A filter can inspect the request and modify the

response returned to the client, and can therefore be used for a multitude of tasks from

access-checking to transformation of the response content.

Filters are configured in the webapp's web.xml configuration file, and can be mapped

to individual servlets or particular URL patterns covering many servlets and/or other

files. It is then the servlet container's responsibility to apply the filters to any incoming

request. Multiple filters can be applied to a single request - for example, a request

might first be passed through a filter which replaces special markup in the response

with HTML, and then a second filter which compresses the response before

transmission.

Counterintuitively, servlet filters registered in a portlet application's web.xml (see

Figure 2.8 for example directory structure) are not applied to portlets in that

application when they are rendered by a portal. Filters are only applied to resources

served by the servlet container to the client browser from the same webapp (e.g.

http://myserver.com/myportletapp/page.jsp would be seen by the servlet

container to be in the myportletapp webapp); this never happens with portlets.

Limitations and Improvements for JSR-168 portlet technology

178

Instead, the client requests pages from the portal’s webapp, and the portal invisibly

delegates to portlet classes when it needs them to render part of a page (e.g.

http://myserver.com/portal/index.jsp?pageid=3 might be the form of the URL

visited by the browser, and served by the servlet container from the portal webapp).

Thus only filters defined in the portal's webapp would be applied to the portlets in a

portal page.

JSR-168 mentions portlet filters as a feature which will be defined in the next

specification. The functionality provided by filters can currently be duplicated by other

methods, such as having portlets inherit from a parent class with the required common

features, or the workarounds below.

Workaround

The Apache Portals Bridges project includes a generic, JSR-168-compliant, Filter

Portlet, which can provide similar functionality to servlet filters. The Filter portlet acts

as a wrapper around the real portlet. This is done by registering the Filter portlet in the

portlet.xml , and parameterising it with the name of the 'real' portlet class.

Another option is to use aspect-oriented programming[138] to intercept portlet methods

and wrap them, which would be very similar to filters but differ in the method of

configuration.

Portlet applications using either approach should be relatively easy to modify to

support real portlet filters when it is time to upgrade to the next standard, as both

approaches keep the filter code completely separate from the portlet code.

7.3.2.2 Inter-portlet Communication (IPC)

JSR-168 leaves the method of communication between portlets to be defined in the next

specification, so there is currently no official API through which portlets can exchange

messages. Communication is still possible, by using shared session attributes visible to

all portlets in the same application, or by using external message stores such as

databases. However the detailed implementation of such communication is left up to

the portlet developer[158].

Limitations and Improvements for JSR-168 portlet technology

179

Conversely, many Portals make their own detailed provisions for IPC, using a variety

of models and configuration methods (see Section 5.1 for examples), and have done so

since before JSR-168 was published. The use of such communication services saves

considerable development time, but the portlets developed are then portal-specific.

Workaround

As a stopgap measure before the next portlet specification is finalised and

implemented by portals, we have implemented a library for portlet messaging which

works within the limitations of JSR-168. This enables developers to write

communicating portlets easily without needing to implement the messaging system as

well, thus partially levelling the field between JSR-168 and portal-specific messaging.

Of course, an arbitrary third-party portlet will still not be able to participate in such

communication without being rewritten to use this messaging library - but that level of

compatibility must wait for an official IPC API in the next specification.

A more detailed description of existing portlet communication systems and the design

of the messaging library is given in Chapter 5.

7.3.2.3 Access to Portal Services

Services such as management of pages, portlets, users, roles and access permissions are

provided by the Portal hosting the portlets. With JSR-168, there is no way for a portlet

to access these services: it cannot inspect its page environment or other portlets, and

security is limited to the PortletRequest functions getUserPrincipal/

getRemoteUser and isUserInRole .

As a result there are a number of things a JSR-168 portlet is unable to do, including:

• Modify page layouts, e.g. add a new portlet to a page

• Add or remove portal pages

• Manage users and roles

• Set page or portlet access permissions

• Find out what other pages there are on the portal, and link to them

• Find out what other portlets exist on a page, or on the whole site.

Limitations and Improvements for JSR-168 portlet technology

180

One example where such services would be useful is to allow portlets to generate links

to other pages or portlets. If the portlet were able to retrieve a list of available portal

pages at runtime, it would be able to present a richer configuration interface to the

user. For example, one portlet might redirect to another portal page as part of a longer

process involving many portlets, and the administrator or even the users might be

allowed to specify which page should be next in sequence.

Portlets might also be able to use information about what other specific portlets were

present on portal pages. For example, a portlet might print links to related portlets, if it

detected their presence. Or a company might distribute a collection of portlets, but be

unable to guarantee which exact portlets were present in any given installation: e.g. a

particular forum database might need to be set up, or a particular server-side

visualisation or analysis package installed and paid for.

Management and inspection of pages, portlets and users/roles programmatically in

portlet code can currently only be done using portal-specific extensions; normally, it is

done using the portal's own management tools. While many of these functions would

be very useful in some scenarios, a question would remain over how much power a

portlet should be given to actually modify its own hosting environment (read-only

inspection would be less of a risk, but still perhaps a security concern). Even if access to

such functions were to be provided in a later portlet specification, it would be likely

that final control would remain with the portal administrator, who would be able to

configure the permissions granted to portlets. In addition, different portals currently

use different models for managing pages and users; it may not be appropriate or

desirable for the portlet specification to specify in detail the approach taken by portals

in implementing these services, but this might become necessary if a standardised way

for portlets to access the services were provided.

7.3.2.4 Window ID

The portlet window is a particular instance of a portlet on a portal page (Figure 2.5).

There is some variance in the exact interpretation (discussed later in this chapter), but

generally the portlet window is considered as an independent module that maintains

its own state separately from all the other portlet windows in the site.

Limitations and Improvements for JSR-168 portlet technology

181

Knowing the portlet window ID is critical when developing JSR-168 portlets as

communicating components. This is particularly relevant when there are multiple

portlet windows based upon the same portlet entity (e.g. multiple Weather portlets,

each set for a different city). Preferably, this ID would stay the same across browser

sessions. The Portal itself will already have assigned an internal ID for each portlet

window, so that it can store and retrieve portlet window preferences etc., but JSR-168

provides no simple way to access this ID from within the portlet code. In some

situations, the method RenderResponse.getNamespace() may be a suitable

alternative, but this only provides a namespace for the portlet window which is unique

within the current page (PLT.12.3.4); it is not guaranteed to be unique across the whole

portal, or even to be consistent across different requests in the same session.

Window IDs can also be used to permit easier use of external data stores - e.g. data that

is too large to go in the portlet session/preferences, or too complex to store as a String

in a preference. Another example is in a "Message of the Day" or generic "Content"

portlet, which ideally could be edited by users with administrative privileges, but

whose content would be visible to all users. For example there might be a Content

portlet on every page of a fixed portal layout, which only admins could edit. In this

particular use case, the content cannot be stored in JSR-168 preferences, as such

preferences are user-specific and so only the admin entering the content would see the

changes. Thus, to implement this "shared preferences" behaviour, the content must be

stored in an external data store. With an arbitrary number of Content portlets (e.g.

being added to new portal pages), the Window ID (common for all users) is an ideal

key to use to store the content in the external data store. An alternative, not using

Window IDs, would be to add separate portlet entities in portlet.xml for each

Content portlet, including an initialisation parameter in each entry which is the key for

the content in the remote store. However this is a far more cumbersome approach as it

requires changes on the server for every new Content portlet added to a page.

A further use of a Window ID is in namespacing cookies, so that cookies stored (by

JavaScript) by one portlet window do not interfere with other windows showing the

same portlet entity on other pages. This is particularly important when AJAX[27] is

being used to create a user interface whose client-side state must be persisted in a

Limitations and Improvements for JSR-168 portlet technology

182

cookie. RenderResponse.getNamespace() may be usable here instead, but there is no

guarantee that it will provide a namespace unique across the whole portal.

Workaround

It is possible to generate an arbitrary unique ID for a portlet window, and store it in its

local session when the window is first rendered; this is quite easy to implement

(Appendix A1). A per-session ID can be guaranteed to be unique for the portlet

application by registering and checking it against a list of assigned IDs in the

APPLICATION_SCOPE session. If the ID must persist across multiple sessions, it can

instead be generated once and stored in the user's preferences for that portlet window -

however, this approach opens up the possibility of ID clashes with portlets which have

not yet been initialised in that session, and so an official method of retrieving the ID

would be preferable.

Another, more reliable, workaround makes use of the portlet window ID which is used

by the portal to namespace PORTLET_SCOPE session attributes, as described in

PLT.15.3. Assuming that the portlet is able to inspect the APPLICATION_SCOPE

session and access the full name of namespaced session attributes (encoded as

"javax.portlet.p.<ID>?<ATTRIBUTE_NAME>"), it would be able to retrieve the portal's

unique ID for the portlet window by deconstructing that full attribute name. Example

code for doing this is provided in Appendix A1.

7.3.2.5 Session ID

When a user visits a portal with a web browser, it is common for the server to start up

a server-side ‘session’ for that user. With its page response, the server sends back a

unique session ID to the browser, which the browser will then include with all

subsequent requests. The server can thus use session state to persist information across

requests. When the browser is closed, the session is effectively lost as the user will have

no way of re-initialising the browser with the same session ID, and eventually the

session state on the server will expire and be cleaned up from memory.

Following the servlet specification, each web application has its own separately

maintained session. This is done to keep web applications from accessing or

Limitations and Improvements for JSR-168 portlet technology

183

overwriting other applications' private session data. As discussed and illustrated in

Figure 2.7, the portal and each portlet application are all web applications, and each

portlet application has its own session (even if in practice the portlet sessions are

‘virtual’, within the portal session).

A portlet can retrieve the unique ID of its portlet application session with

PortletSession.getId() . It is entirely possible that portlets in different portlet

applications will see different portlet session IDs. The portal will also have its own

session ID. This section is concerned with the retrieval of this ID by portlet code.

There are several use cases where a portlet may need to know the portal's session ID -

these are typically when related portlets are deployed in different portlet applications

(e.g. due to a modular distribution/licensing scheme).

Firstly, when portlets in different applications need to communicate, they need to find

an ID to represent the current user session which they are all part of. The ideal

identifier is simply the portal's own session ID. This ID can then be used to store and

retrieve messages in an external message store accessible by all portlets.

Secondly, the session ID would also allow back-end resources (used by portlets in

different applications) to track proper user sessions, so they could enforce licensing

limits, enable clustering, or simply perform logging.

Workaround

The JSR-168 method PortletRequest.getRequestedSessionId() can very nearly

provide the needed functionality, as it returns the session ID included in the client

(browser) request, which corresponds to the Portal session. However, unlike

HttpSession.getId() or PortletSession.getId() , this approach does not work

with newly-created sessions - i.e. the very first page rendered by the server, before the

client has been informed of the session ID. This can be inconvenient if as part of session

creation the portlet needs to set up external resources reliant on the portal session ID

(such as external message stores). Thus to avoid this problem, any portlets relying on

this method should not be placed on the first portal page.

Limitations and Improvements for JSR-168 portlet technology

184

Apart from using PortletRequest.getRequestedSessionId() , two approaches have

been investigated: setting an arbitrary session ID in a cookie visible to all portlets

(which also has the first-page problem, and is quite unreliable), or modifying open

source portals to pass on the Portal's session ID in the PortletRequest. Neither of these

are ideal: the cookie approach is more fragile and thus inferior to using

getRequestedSessionId() , and although the portal-modification gives a better end

result, it requires access to portal code and also restricts the portlets to using that

specific modified portal. We believe that PortletRequest.

getRequestedSessionId() is currently the best approach, but the problem of its

behaviour with new sessions is important enough to be highlighted.

7.3.2.6 Cookies

Cookies are small pieces of information stored on the client machine by a web browser

as name-value pairs, used for client-side tracking of state. They can be set either by a

response header from the server, or using JavaScript. When making a request to a web

server, the browser includes any cookies set by that site as a header in its request.

Cookies are used for storing state information relevant to the browser session. They are

particularly useful if AJAX[27] is used to modify the client-side state of a portlet. AJAX

applications work by using JavaScript to send off browser requests invisibly in the

background, to submit and/or retrieve data from web pages. Portals provide no AJAX-

addressable endpoints to allow direct interaction with portlet windows, and so there is

no convenient way for a JavaScript request to update or read the portlet state (e.g. read

from or save information to a portlet window's local session). Thus portlets using

AJAX may have to store state information in client-side cookies, instead of the server-

side portlet session.

Cookies can also be used to communicate information (e.g. login information, IDs of

working data sets) between portlets and other, non-portal, web applications on the

same server - which themselves might use any technology (J2EE, PHP etc). An external

data store, accessible to both applications, could alternatively be used to store this

information - however cookies are simpler to implement, for small amounts of data,

and do not require maintenance.

Limitations and Improvements for JSR-168 portlet technology

185

Reading Cookies

Servlets can access client cookies using the method HttpServletRequest.

getCookies() . There is no direct equivalent for this in the PortletRequest , however

on some Portals the value of the cookie Header can be accessed using

PortletRequest.getProperty("cookie") . This approach is not guaranteed to work

reliably on all portals. According to PLT.11.1.4, this is due to differences in portals and

servlet containers which may make the headers unavailable to portlets. JSR-168 does

support some headers (such as Content-Length and Content-Type) with specific

access methods in the PortletRequest interface, but unfortunately this was not done

for cookies.

Hopefully the retrieval of cookies will be addressed in a later specification.

Workaround

Some portals will allow the cookie to be retrieved using PortletRequest.

getProperty("cookie") , but this cannot be relied upon.

Setting Cookies

Servlets can set cookies by including a special header in the response. This is done on

the HttpServletResponse using either addCookie or setHeader . Neither is available

to portlets on the PortletResponse or its subclasses.

A portlet cannot be expected to be able to set response headers during the render

phase, as it can only affect its rendered page fragment (and the beginning of the page

response, where the headers are included, may already have been sent to the client by

the time the portlet render code executes). However, it should be theoretically possible

for a portlet to set a cookie on an ActionResponse in the action phase (which occurs

before any rendering takes place), as it is already possible to send a ‘redirect’ response

with a Location header during this phase, using ActionResponse.sendRedirect() .

Hopefully a later specification will permit cookies to be set on an ActionResponse .

Limitations and Improvements for JSR-168 portlet technology

186

Workaround

Without support in JSR-168 for setting cookies as part of the response, it is necessary to

resort to approaches which are more clumsy and fragile. One option is to set a cookie

using JavaScript, which can be done by having the portlet generate the JavaScript as

part of its rendered display - however this relies on JavaScript being enabled on the

client. Another option is to add a servlet to the portlet application which sets a cookie

when it is accessed. This servlet must be accessed through a direct URL by the client,

not dispatched to or included by the portal, and so it must be loaded through an

IFRAME or a popup window generated as part of the portlet display. Both approaches

(JavaScript & servlet) have the disadvantage that the cookie is set only as a result of the

client viewing an already-rendered portal page. It is also possible that the cookie will

never be set, if the user cancels the page or visits another before the relevant portlet

finishes displaying (e.g. on a long or slow-loading portal page).

7.3.2.7 'Exclusive' display mode

Portlets generate only a fragment of the eventual response sent to the client. Therefore,

if a portlet needs to serve binary content (images, PDFs etc) to a client, it cannot

directly include these into the HTML stream. Although some browsers permit binary

objects to be embedded in HTML, support for this is not yet widespread.

To provide a file for download, a portlet must cause the client to make a new request -

either directly to the file, or to a servlet which retrieves it. This is done by either

rendering a link to it, including it in an IFRAME, or opening it in a new window.

However, problems related to the treatment of cross-context sessions may be

encountered when implementing these approaches on some Portals (discussed below).

This means that any portlet state which is relevant to the servlet (e.g. current user, file

to show, data to be rendered as a chart) needs to be explicitly passed to it, either

through query parameters (in the servlet URL), cookies, or through an external data

store. The latter involves extra complexity, and the first two methods send all the data

to the client browser, then back again to the servlet. Apart from the inefficiency and

extra coding required, if there is a large amount of data to be sent - e.g. to a servlet that

Limitations and Improvements for JSR-168 portlet technology

187

generates a chart or other visualisation based on the data - this probably won't even be

practical.

As an alternative, some Portals (e.g. uPortal[83]) have chosen to make available an

'Exclusive' mode in which a portlet generates the entire response, not just a fragment.

This makes any problems with cross-context sessions irrelevant. This approach is

portal-specific but quite popular, and may also have relevance when considering the

use of AJAX in portlets (discussed below).

7.3.2.8 Remote (client) IP

Servlets can find out the IP address of the client which sent the request, through

ServletRequest.getRemoteAddr() or getRemoteHost() . This can be useful for

limiting access by IP address or logging IPs associated with actions for administrative

or security purposes.

However, portlets are currently insulated from finding out information about their

actual end user - perhaps to emphasise and simplify the portal's role as intermediary.

The PortletRequest classes do not provide an equivalent of these methods, and it is

therefore not possible for a portlet to directly retrieve the client's IP address from the

request as a servlet can. Nor can this be worked around by causing the portlet to

dispatch internally to a servlet, using a PortletRequestDispatcher - JSR-168

specifically prohibits the ServletRequest methods concerned from working in this

context (PLT.16.3.3).

Workaround

We have not found a good workaround for this issue. One possibility is to use a

combination of servlets and cookies as described earlier, which would require support

for reading cookies in portlets, an additional servlet in the portlet application (which

retrieves the IP address and saves it in a cookie), and at least one page render before

the portlets would have access to the client IP address.

Limitations and Improvements for JSR-168 portlet technology

188

7.3.3 Further Issues

When developing portlets, there are also a number of areas of possible confusion

(rather than missing features), often due to differences between portal

implementations.

7.3.3.1 Portlet Windows/Instances

Portlets are defined with entries in the portlet.xml deployment descriptor. PLT.5.1

specifies that only one actual instance of each portlet so defined will be created by the

portlet container (or one per VM in the case of a distributed application). This single

instance will be used to process any Action or Render requests targeted to that portlet.

However, the same portlet - with only one definition in the portlet.xml - can be

placed in more than one position on a site, and often it is necessary for these different

portlet windows to operate independently. For example, a 'Stocks' portlet might be

configured by the user to show a report for different stocks on different pages; a portlet

which could be pointed at any WSDL file to generate an interface to a web service

might also be present on different pages, providing access to different web services; a

content management portlet would need to display different content on different

pages. Conversely, a “shopping basket” portlet which appears on many pages should

always act as the same portlet.

JSR-168 defines a portlet window as the combination of a portlet and its preferences on a

portal page. It also states, "A portal page may contain more than one portlet window

that references the same portlet and preferences-object." (PLT.5.2.3). The details of

creating and managing portlet windows are left to the portal server and portlet

container.

This leaves several aspects of the concept of a 'portlet window' undefined or

ambiguous, including:

Limitations and Improvements for JSR-168 portlet technology

189

1) Do different portlet windows also maintain their own, separate,

PORTLET_SCOPE sessions and render states (from Action requests) as well as

preferences?

2) Can there be different portlet windows of the same portlet which are associated

with different preferences and session objects?

a. on the same page?

b. on different pages?

The answer to the first question is usually assumed to be 'yes', but the second is more

variable. Different portlet containers and portals are implemented using different

assumptions.

The strictest approach, taken by Pluto[30] and GridSphere[78], is to assume a simple

mapping of portlet definition (in the portlet.xml) to portlet window: adding a second

portlet window for the same portlet will merely result in a mirroring of content from

the first. In this case, if multiple independent portlet windows are required, the portal

administrator must add multiple definitions in the portlet.xml for the 'same' portlet

(merely differing in portlet name).

Perhaps the most intuitive approach is to treat every portlet window on a page as an

independent entity, with its own set of preferences, PORTLET_SCOPE session, and

render state. This allows for an unlimited number of portlet windows associated with a

single portlet definition, and is particularly well-suited to sites which give users the

freedom to add portlets to their pages. This is the approach taken by Apache Jetspeed

and Oracle Portal.

Intermediate approaches are also possible. For example, a portal might allow portlet

windows from the same portlet definition to exist independently on different pages,

but not on the same page (we encountered this behaviour in Liferay[52]).

JBoss Portal[51] adds an additional level of abstraction between the portlet definitions

and the portlet windows: it allows a "portlet instance" to be dynamically created at

runtime, based upon a portlet definition[105]. Each JBoss portlet instance has a

modifiable set of associated preferences, and may be used as the base for one or more

Limitations and Improvements for JSR-168 portlet technology

190

portlet windows. This approach is the most flexible, allowing both independent and

linked portlet windows based on the same portlet definition. To create multiple

independent portlet windows, each window must be based on a new portlet instance

of a single portlet definition. To create identical/linked portlet windows on different

pages - for example, a chat portlet that should retain user settings and state across

pages - a single portlet instance can be used as the common base. The disadvantage of

this approach is the increased complexity in adding new portlet windows to pages,

which must now include steps for portlet instance creation and association.

Differences in portal behaviour on this subject do not significantly affect the process of

developing portlets. They do affect the way the portlet deployment descriptor is

written (if extra entries are necessary to produce independent portlet windows), and

the way site designers and users add portlets to pages. For dynamic sites which allow

users to create pages, the strict interpretation may not be sufficiently flexible,

depending on the expected level of portlet reuse.

7.3.3.2 The PortletSession and the HttpSession: Cross-context handling

As discussed in Section 2.6.1.3, a portlet application is a web application which

additionally contains portlet classes and a portlet deployment descriptor file listing the

portlets. It may also contain anything else that can be in a normal web application,

including arbitrary files, JSPs and servlets. These can be accessed and served as normal

by the servlet container.

According to JSR-168 (PLT.15.4):

"The PortletSession must store all attributes in the HttpSession of the
portlet application. A direct consequence of this is that data stored in the
HttpSession by servlets or JSPs is accessible to portlets through the
PortletSession in the portlet application scope. Conversely, data stored by
portlets in the PortletSession in the portlet application scope is accessible to
servlets and JSPs through the HttpSession ."

This behaviour is also described in PLT.3.1: "Bridging from Portlets to Servlets/JSPs".

This is clearly intended to allow portlets and servlets in the same portlet application to

easily work together, communicating through the shared session. The session may be

Limitations and Improvements for JSR-168 portlet technology

191

used to send data (for example if the portlet wishes to delegate to a servlet to generate

a binary file based on that data, such as a graph image or a PDF), or details of the

logged-in user (which the servlet may use for authorisation).

However, there are implementation issues which mean that this behaviour is not found

in some servlet container/portal setups (notably the Apache Tomcat[33] servlet

container). The following description is based upon our experiences and that of many

others[136,148,178].

As we have mentioned earlier, the Servlet 2.3 specification requires that the server

maintains a separate session for each webapp (SRV.7.3). As the portal and the portlet

applications are all web applications, they should each have their own session. This is

compatible with the JSR-168 description: the servlets within a portlet application could

be reasonably expected to share the same session with portlets in that application.

However, the way that a portal serves pages to the client browser makes the matter

more complex. When visiting a portal page, the browser will typically access an URL

along the lines of http://server.com/portal/display?pageid=3 . The resulting

page may include portlets from any portlet application on that server, but there is no

indication of the source portlet application in the URL. As we discussed earlier

(7.3.2.1), to the servlet container, the request is only to the portal web application, and

the corresponding session is the portal application's session. Thus, many portal

implementations actually store both PORTLET_SCOPE and APPLICATION_SCOPE

portlet sessions within the portal's own session, not in the session of the parent portlet

application (illustrated in Figure 2.7).

Consequently, when a servlet or any other portlet application resource is accessed

directly by the browser, with the form http://server.com/myportletapp/

getfile.jsp (e.g. in an IFRAME or popup window), and the servlet container uses the

session belonging to the specified portlet application, this session does not contain any

of the APPLICATION_SCOPE or PORTLET_SCOPE session for that application's

portlets. In this case, the only way the portlet can send information to the servlet is by

appending URL query parameters (e.g. http://server.com/myportletapp/

Limitations and Improvements for JSR-168 portlet technology

192

getfile.jsp?name=report.doc), which due to limited URL length may not be

appropriate or possible for large amounts of data.

If on the other hand the servlet is included as part of a portlet's output through the

portal, using JSR-168 mechanisms (in a portlet render method,

getPortletContext().getRequestDispatcher(jspPath).i nclude(request,

response) , or in a JSP included by the portlet, <jsp:include>), the session behaviour

is correct as described in JSR-168. However this approach is not suitable for many

common use cases for servlets, as it excludes the use of pop-up windows, IFRAMEs,

and the provision of binary files to the end user.

From testing with Jetspeed/Pluto on Tomcat 5.0 and the default configuration of 5.5,

servlets accessed directly do not share the portlet session. In Tomcat 5.5 configured

with emptySessionPath="true" , behaviour is correct as described in the portlet

specification.

The new getResource function provided in the draft WSRP 2.0 specification[14] gives

one insight into how this confusion might be resolved in the future. getResource

allows the portlet consumer (the portal) to retrieve a resource such as a JSP within a

portlet application, while providing the portlet context to that resource. This would

explicitly make the portlet session and other parameter settings available to resources

fetched in this way.

7.3.3.3 AJAX in portlets

AJAX has become increasingly popular in developing dynamic web interfaces which

can change their display and retrieve information from the server without requiring

the user to submit a new request or reload the page. The underlying methods are

described in Section 6.3; the key concern here is that AJAX interactions require an

addressable endpoint on the server for retrieving or submitting data (e.g. a servlet).

Portlets may wish to use AJAX in their interfaces for faster responses to interactions,

particularly considering the additional overhead involved in reloading a portal page,

and can deploy the corresponding endpoint servlets (or JSPs) in their portlet

application.

Limitations and Improvements for JSR-168 portlet technology

193

One potential problem with this approach is due to the previously-described cross-

context sessions issue: if the servlet does not share the same session as seen by the

portlet, AJAX calls will be unable to see or update the APPLICATION_SCOPE portlet

session state. In this situation, either the necessary state must be included with every

AJAX request (as GET parameters, so only a small amount of data can be sent this

way), or the servlet would only be able to perform tasks that are completely

independent of the portlet state.

Even if the servlet and portlet do see the same session, the servlet will be restricted to

seeing and setting attributes in the APPLICATION_SCOPE portlet session. Thus AJAX

calls to a servlet will not be able to modify session attributes belonging to a particular

portlet window, or indeed access any portlet-specific functionality such as reading or

setting portlet initialisation parameters or preferences.

JSR-168 does not support AJAX calls which access any kind of portlet functionality. To

allow this, the portal would need to provide a directly-accessible endpoint with a URL

for a portlet window, for the JavaScript call to access, but with JSR-168, portlets can

only be accessed as part of a whole portal page, not individually. Such an endpoint

might act in a similar way to the suggested 'Exclusive' portlet mode described earlier:

the portlet, in a special render mode, would be able to output the entire page. Then,

provided with an appropriate URL, an AJAX call could access the portlet in this mode

directly. However, making the 'Exclusive' render mode simply a new Portlet Mode

would not have exactly the required effect: the mode of the portlet firstly can only be

changed in an Action phase, and secondly should not have been changed as a result of

AJAX requests when the user later revisits the portal page: this usage pattern would

only want the ‘Exclusive’ portlet mode change to apply for a single AJAX request.

Hence, due to the differences in behaviour, an entirely new kind of portlet request

alongside render and action might be the better approach, rather than adding an

‘Exclusive’ portlet mode.

AJAX support is currently still under discussion in both WSRP 2.0 and JSR-286 expert

groups; however regardless of the eventual decision, the WSRP 2.0 function

getResource (described in the previous section) has potential to improve the

Limitations and Improvements for JSR-168 portlet technology

194

functionality of servlets as AJAX endpoints, as it should ensure that these servlets are

provided with access to the portlet's context.

7.3.3.4 Authentication Integration: Java Authentication and Authorization Service
(JAAS)[2]

Each J2EE application server has a different way of configuring new Java

Authentication and Authorization Service (JAAS) login modules, so installation of the

portlets which make use of JAAS to access remote resources will additionally require

this administrative task.

We found that support for JAAS in different portal/application server combinations

was sometimes obscure or unreliable, and workarounds or special configurations

sometimes had to be added. In particular we found that several portals (Liferay,

Jetspeed 2) deliberately override the JAAS settings of the host J2EE server (e.g.

Tomcat). Integration of an existing authentication mechanism with that of a particular

Portal may therefore be an initial time-consuming task. This is not an issue with the

portlet specification, but more generally with the integration of JAAS and J2EE[162].

7.3.3.5 Library conflicts

In some cases, the variety of libraries available from the servlet container and the portal

can result in version conflicts with libraries included by the portlet application. This is

particularly noticeable with logging libraries (e.g. commons-logging[38] or Log4j[53]) and

Apache Struts[32].

Conflicts with logging libraries are usually resolved by removing copies of the libraries

from the portlet application, and simply using the ones present in the server or the

portal webapp. Some portlet application deployment processes (e.g. Jetspeed's) will

automatically remove such logging libraries.

The issue with Apache Struts is more complicated. Struts is commonly used as the

framework for servlet applications using the MVC design paradigm, but is not yet

directly compatible with the portlet model - later versions should provide transparent

portlets support, but until then, workarounds are necessary. One such workaround is a

generic Struts bridge, developed as part of the Jetspeed 2 project, which allows an

Limitations and Improvements for JSR-168 portlet technology

195

existing Struts-based application to be used as a portlet, and can also be used with

other portals. However some portals instead provide their own built-in methods of

using Struts with portlets, e.g. with a modified Struts library, and/or inheritance from a

StrutsPortlet class provided by the particular portal. This custom Struts support can

interfere with more standard use of Struts for servlets in portlet applications - e.g. in

helper servlets that should work independently of the portal. In some cases, when the

portlet application is deployed, the portal will modify or replace the Struts

configuration or the Struts library used, so that the 'normal' Struts-based servlets may

no longer work. Such conflicts may be much harder to resolve.

7.3.3.6 Using common code for portlets and servlets

Portlets and servlets use similar, but different classes for representing HTTP Servlet

requests, responses, and sessions. This makes sharing common control code between

servlets and portlets difficult: for example, a utility function which would get or set a

session variable would not be usable in both portlets and servlets, despite the function

calls being very similar in appearance (e.g. HttpSession.getAttribute(name) vs.

PortletSession.getAttribute(name)). In addition, the problem may arise when

using common libraries which do not (yet) provide a portlet version (e.g. commons-

fileupload[37], which now supports portlets in version 1.1 released Dec 2005).

Workaround

If this issue does not appear in many places, and the code can be modified, it may be

acceptable to add a few duplicate functions that simply take different parameter types -

however this is bad coding practice. Portal-specific solutions are sometimes suggested

to obtain an object of the required class, using special knowledge of how to retrieve a

particular object from a request, or by knowing which objects are safe to cast (e.g.

Apache Pluto's portlet RenderRequest can be safely cast to a HttpServletRequest).

Our generic, JSR-168-compliant solution was to write a number of simple wrappers or

adapters, so that a Portlet object can masquerade as an HTTP Servlet object (or vice

versa). For our requirements - mostly session access - this was sufficient, although this

approach will clearly fail if an attempt is made to call a function which is not available

on the underlying object. The only significant consideration when developing and

Limitations and Improvements for JSR-168 portlet technology

196

using these wrappers was that the different scopes available in a PortletSession must

be accounted for: when wrapping Portlet and HTTP sessions, it is necessary to specify

whether the underlying session should be treated as a PORTLET_SCOPE or

APPLICATION_SCOPE session.

7.4 Considerations for the next Portlet Specification

The Portlet Standard 2.0, JSR-286[106], is currently in development.

Inter-portlet communication and portlet filters are already intended to be part of the

next specification. IPC will closely follow the model defined in WSRP 2.0[14] (currently

in draft).

In addition, we have suggested the following features to the JSR-286 Expert Group,

and offered the use cases outlined in this chapter:

1. Cookies: be able to read them, and set them in the Action phase

2. Clarify support for Portlet Windows (instances of the 'same' portlet on different

pages)

3. Retrieve ID of current Portlet Window

4. Retrieve user's Portal Session ID (the same for all portlet applications, and even

when session is new)

5. Retrieve the remote (client) IP from the request

6. Some form of 'Exclusive' display mode: this would allow portlets to serve non-

HTML content

7. Access to Portal Services

o inspect/manage page layouts, pages

o inspect/manage users and roles

8. Allow portlets to be queried by AJAX requests. This would need some form of

an 'Exclusive' mode and an actual endpoint on the portal allowing direct

requests to a portlet window.

Limitations and Improvements for JSR-168 portlet technology

197

The need for the Session ID and Window ID is much less than in JSR-168, as they were

primarily useful for implementing IPC, which will no longer be a concern. Some

common use cases remain, but these have alternative approaches.

The 'Exclusive' display mode may become unnecessary if JSR-286 supports WSRP 2.0's

new 'Resources' feature. This is a new way of accessing resources within the portlet

application such as servlets, that provides the resource with all relevant portlet context,

and thus resolves the cross-context session problem. Servlets will thus be able to

reliably access the portlet session, as if in a Render phase, although they will be unable

to use IPC or other services restricted to the Action phase.

The other potential use of an Exclusive mode is by AJAX applications. Support for

AJAX is acknowledged as important and is being seriously considered by both WSRP

2.0 and JSR-286 expert groups. However it may be too complex for inclusion at this

stage, and left to version 3.

7.5 Conclusion

In this chapter, we have discussed the results of our experience in using Portal

software to manage websites, in particular Portals supporting the JSR-168 Portlet

specification. After reviewing the alternative development approaches of using J2EE

servlets or other, non-JSR-168 portals, we have assessed the limitations of JSR-168

portlets in both design and implementation, and presented current solutions and

workarounds.

As a result of these investigations, we have highlighted a number of features that

might be beneficial to add in the next portlet specification, provided relevant use cases,

and submitted them to the JSR-286 Expert Group. Any new features in this

specification will also be coordinated with the next version of WSRP, also currently

under development.

Conclusions and Future Work

198

Chapter 8. Conclusions and Future Work

In this thesis we have discussed the needs and the development of analytical web

portals, with analysis components provided by portlets accessing Discovery Net

services. The most important Discovery Net portlet in this respect is the Service portlet,

which provides a web interface for parameterising and executing workflows. In

Chapter 4, we described how workflow creators can define a simplified "black-box"

model of their workflow, and design its corresponding web interface, all using

graphical tools in the Discovery Net Java Client. The level of abstraction introduced by

the 'deployment' process enables us to combine the automated (codeless) generation of

interfaces with customisation of individual services to create more intuitive and user-

friendly web interfaces.

The use of portlets in the Discovery Net Portal has brought several notable

improvements in comparison to the servlet-based previous version.

1) The explicit separation of Discovery Net Portal functionality into individual

portlets allows page layouts to be easily created and edited (Chapter 3).

2) The most significant advantage is in the ability to treat each Service portlet as an

independent component. Thus, multiple Service portlets showing different

services can be placed on the same or different pages for easy access. This had

previously been a requested feature, but had been completely impractical to

implement with the static structure of the servlet-based site.

3) The new (and extremely useful) ability to directly pass results from one Service to

another was achieved using our inter-portlet communication (IPC) library.

While developing the new Discovery Net portal and its collection of portlets, we

learned much about the specific advantages and limitations of using the JSR-168 portlet

standard. As a result of our experiences with JSR-168, we have suggested several new

Conclusions and Future Work

199

features to the Portlet 2.0 (JSR-286)[106] Expert Group, and supplied corresponding use

cases. We have reported on our findings and explained some confusing or problematic

situations that may be encountered by portlet developers (Chapter 7). Whenever

relevant, we have presented workarounds and solutions to problems, the most

significant of which was the development of a JSR-168-compliant library for IPC.

IPC was left out of JSR-168, but is still an essential feature when developing portals.

Specific portal implementations often include easy-to-use IPC services for their native

(non-JSR-168) portlets. On the other hand, finding a messaging model that fits within

the constraints imposed by JSR-168 and developing a corresponding messaging library

takes significant time and effort, as well as a good understanding of the limitations of

the specification and portlet behaviour. This puts JSR-168 portlet developers

(particularly those new to the field) at a severe disadvantage.

We therefore developed a JSR-168-compliant and open-source library for IPC (Chapter

5), which offers a portable alternative to the portal-specific solutions, and has been

made freely available for download. This significantly improves the situation for

portlet developers, eliminating the hurdle of having to implement the mechanics of a

portlet messaging service. We have used this library heavily in our development of

interacting Discovery Net portlets, and also in the custom-developed portlets for the

Translational Medicine Portal.

The use of portal software such as Jetspeed[29] or Oracle Portal[66] provides valuable,

time-saving features including user authentication and management, user preferences,

and page creation and customisation. However, some other important features are

missing from JSR-168 portals: apart from IPC, support for the recently popular style of

web page design centred on ‘AJAX’[27] is possibly the most in demand. AJAX is the use

of JavaScript for asynchronous fetching of remote resources, which can then be used to

update the page display without reloading it. Its use typically produces dynamic and

interactive web pages, which behave more like fast-responding client-side applications

than static documents. Current JSR-168 and WSRP standards do not provide enough

'hooks' for full exploitation of AJAX methods in portlets, although limited use is

possible. It is described in more detail in Section 7.3.3.3 and in Section 8.2 below, and is

Conclusions and Future Work

200

used with excellent effect in the Translational Medicine Portal's OLAP browser

(Chapter 6).

A variety of actual applications have been used to inform and illustrate this work, from

theoretical demos to real-world portals. All of the application scenarios have been

collaborative efforts, involving other research groups, their students and commercial

companies. Different applications have different focuses and requirements: some rely

on user-friendly presentation of a few, well-known services; some emphasise flexibility

and allow users to create their own custom pages from a large library of services; some

use the Discovery Net portlets as just another component in an existing, larger portal.

All, however, take advantage of the Discovery Net Service portlet, which is the core

portlet of the system. This can add analysis functionality to an existing JSR-168 portal,

allowing users to do more within a familiar Portal environment, and administrators to

easily add new functionality to the system. The Service portlet has the great advantage

that once installed, it can provide access to any Discovery Net service, whether

available at the time of installation or in the future. This significantly reduces the

burden on the portal administrator, who might otherwise have to install individual

portlets for every service as it became available. The best examples of this kind of

integrated portal are the Oracle Business Intelligence demo (Section 3.9) and the

Translational Medicine Portal (Chapter 6) developed for the Windber Research

Institute. The ability to support these different scenarios is thanks to the wide range of

service deployment features providing functionality, and the flexibility of the portlet

system in providing final integration and presentation on the web.

In general we have found JSR-168 to be up to the task of building analytical portals,

despite its limitations, mainly due to the benefits of being able to deploy our portlets

on other portal servers. Experience from developing servlet-based applications is very

applicable, as there are close similarities in the portlet model, and portlets can also

make use of JSPs and servlet resources. However, it has taken several years since the

publication of JSR-168 for portlet support to be added to commercial portal

implementations and Java web libraries and frameworks (e.g. Apache Struts[32],

JavaServer Faces[22], commons-fileupload[37]). With the ongoing development of the

second portlet standard, we expect that standard portlets (JSR-168 and later JSR-286)

Conclusions and Future Work

201

will continue to become better established and supported with more mature

development tools.

Thus in summary, the main advantages that the use of portlets provide to the

Discovery Net Web Portal are:

• Time-saving services provided by portal software, particularly the ability for

administrators and even users to create and edit portal pages.

• Clear separation of Discovery Net functionality into components, which can be

flexibly added to page layouts.

• Communication between Service portlets, allowing results to be automatically

passed on from one service as input to another, using our JSR-168-compliant

IPC library.

• Integration of Discovery Net portlets with clients' existing JSR-168-compliant

portals.

• Third-party portlets can be installed on the Discovery Net Portal to extend its

functionality and meet specific user needs.

The main disadvantage of the current implementation is that due to incompatibilities

between servlet and portlet development tools and libraries (particularly Apache

Struts), it is difficult to adapt and maintain an existing servlet-based site for parallel use

as portlets while avoiding significant code duplication. It may in future become

necessary to abandon Struts for a portlet-compatible system such as JavaServer Faces.

8.1 Future Developments

We expect there will be interesting developments in the upcoming JSR-286 and WSRP

2.0 specifications, which should be released by the end of 2007. In particular, a

standardised method for inter-portlet communication will certainly be defined. We

hope that portal implementers will provide user-friendly methods for configuring

messaging channels/wires between portlets.

Of more interest is whether explicit support for AJAX-style portlet development will be

added - this is currently uncertain, but potentially very useful. AJAX could be used in

Conclusions and Future Work

202

two contexts: within portlets, as was done in our Windber OLAP Browser portlet, or as

a core portal design decision, as a way of updating individual portlets on a page

without needing to reload the entire page. The latter has been tried before (e.g. by

Plumtree Portal[89]), and has potential for improving the client experience, as large

portal pages can be very slow to reload even if only one portlet has changed.

The confusion caused to portlet developers by the separation of sessions seen by

servlets and portlets is likely to be resolved by the new concept of 'resources'

introduced by WSRP 2.0. This will allow resources such as JSPs to be accessed with the

portlet context explicitly provided to them.

Designers of flexible, dashboard-style portals sometimes wish for a way for portlets to

modify the current page layout: e.g. to add a new portlet directly on the page as a

result of a user interaction with a standard portlet. This is currently not possible, as

JSR-168 does not provide portlets with access to the portal page management service.

This feature, along with other portal services such as user management, is likely to

remain out of reach for JSR-286 portlets, as it is not generally considered to be within

the scope of what a portlet should be able to do.

In 2006/7 there has been a lot of activity and interest centred on a related concept: web

page ‘widgets’ (sometimes called ‘gadgets’ or ‘badges’) which are usually implemented

using Javascript/AJAX or Flash, and which may be easily embedded on any web page

while being hosted elsewhere. This is very similar in concept to WSRP’s remote

portlets, which are hosted on one server and accessed and presented through a

different portal. The current situation with web widgets parallels that of the portlet

world pre-standardisation, with many different widget providers (e.g. Netvibes[119],

Google Gadgets[115], Pageflakes[120], Windows Live Gadgets[122]) offering similar but

usually incompatible methods of widget creation and hosting. In contrast with (mainly

Java-based) portlets, there is usually more freedom of choice and variety in server-side

implementation technology, and the resulting widgets are very simple to embed in

web pages, which allows widgets from different sources to be combined easily on the

same page. Web widgets have become a quite general and popular consumer

phenomenon on the internet, whereas portlets (being mainly associated with J2EE)

have gained their main audience in commercial organisations with managed intranets.

Conclusions and Future Work

203

A further related concept is that of operating system widgets (e.g. Yahoo Widgets[124],

Windows Vista Sidebar Gadgets[123], Mac Dashboard Widgets[118], iPhone Web

Apps[116]), whose recent implementations are starting to overlap with those of web

widgets as many are now developed using web technologies (usually Javascript). A

standardisation effort is beginning (Widgets 1.0[121]), but this is still in its early stages.

There is now an opportunity for the widget community to reuse solutions and learn

from the experiences of JSR-168 portal and portlet developers.

8.2 Future Work

Serious development on the IPC library has probably reached its natural end, as it will

be superseded by the standardised IPC which will be included in JSR-286. However,

until support for JSR-286 in portals becomes widespread - which may take several

years - the library will remain a useful resource to developers. If appropriate, we may

revise the library to use a messaging model more in line with that eventually decided

for JSR-286, so that developers using it have an easier upgrade path in future.

Discovery Net services have already undergone many changes over the course of this

work. However, further development can be expected in two areas: firstly, semantic

metadata for service inputs and outputs, and secondly, a server-side mechanism for

explicitly supporting data flow in multiple-service analysis procedures.

Semantic descriptions of service inputs and outputs would add the potential for semi-

automated composition of compatible services. This general concept has been explored

in semantic extensions to WSDL such as DAML-S[174]. For example, it would be possible

to analyse the result output metadata, and provide the user with a list of services

which could use that type of result as input, and whose general service description

matches the application area of the original service. More advanced would be the

ability to offer conversion utilities to intelligently transform a result into a form usable

as input to another service. An implementation of these features would probably make

use of Semantic Web[175] technologies and concepts, such as RDF[176] for markup and

ontologies for semantic descriptions and comparisons[149].

Conclusions and Future Work

204

While the Service portlets support the transfer of results from one service to another,

this is reliant on the portlet system for setting up the messaging channels. This is only

applicable when using the workflows on the portal; the connections are set up on the

portal server. Thus the Discovery Net workflow engine is not ‘aware’ that services are

being used together in a sequence, and other workflow clients such as the Discovery

Net Java Client or even the traditional servlet-based portal cannot make use of service

flows set up on the portlet-based Portal. Future developments are therefore likely to

include core server support for multiple-service processes, perhaps using a standard

orchestration language such as BPEL (Business Process Execution Language[61]).

8.3 Final Thoughts

Despite complexities resulting from the use of the relatively recent portlet standard, the

development of Discovery Net portlets has been well worth the effort. We were

delighted when our belief in the potential of a standards-based analytical portal was

validated by the reaction of the Windber researchers: what started as a database

redesign became a much larger and ongoing long-term project to develop the

Translational Medicine portal.

We also hope that the availability of a library for inter-portlet communication will

make life easier for JSR-168 portlet developers. The main portlet development websites

and communities have linked to the library, and we have received some very useful

feedback as a result. Later this year, the much anticipated release of JSR-286 and WSRP

2.0 will eventually provide more flexible and powerful options to portlet developers,

hopefully enabling both standardised IPC and AJAX support.

But most of all, we look forward to seeing many exciting and useful innovations in the

development of interactive web interfaces over the next few years, as developers learn

to exploit the full potential of AJAX-style design, and the typical web portal begins to

show more of the characteristics of an Analytical Portal.

Glossary

205

Glossary

AJAX Asynchronous JavaScript and XML, a JavaScript programming
language feature enabling the development of very reactive and
interactive web interfaces.

API Application Programming Interface

Applet A Java application which can be embedded on a web page
through a browser plugin.

CERN European Organization for Nuclear Research

CMS Content Management System

DOM Document Object Model, a standardized representation of the
elements within an XML or HTML document as a tree.

GIS Geographic Information System, for programmatic treatment of
map-based information.

GM Genetically Modified

GUI Graphical User Interface

IFRAME Inline Frame, an HTML element

IPC Inter-portlet Communication

J2EE Java Platform, Enterprise Edition

JAR Java Archive, a compressed file format containing resources such
as compiled Java classes.

JSP Java Server Pages, a language for dynamic web pages.

JSR-168 Java Specification Request 168, the Java Portlet Standard 1.0
(2003).

JSR-286 Java Specification Request 286, the Java Portlet Standard 2.0
(2007, in progress).

MVC Model-View-Controller, an architectural pattern for building
applications.

OASIS Organization for the Advancement of Structured Information
Standards

OLAP Online Analytical Processing, for producing rapid results to
queries over a large multidimensional data set.

Glossary

206

Portal Typically, any web site which aggregates several different types
of functionality and presents them to users. A single page often
contains several different services. Users may be allowed to
customise the pages to their own requirements. A subset of
portals support the portlet standards.

Portlet A subsection of a web page whose functionality and
implementation is completely or mostly self-contained. Portlets
may be compatible with one of the portlet related standards, JSR-
168 or WSRP.

Portlet standards JSR-168 is the standard for Java-implemented portlets. WSRP
describes a web-service interface for accessing portlets
implemented in any programming language.

SOAP Simple Object Access Protocol, used by Web Services.

Translational

Medicine

Methodology enabling closer linking between clinical practice
and research labs.

URL Uniform Resource Locator; a web “link” or “hyperlink”.

VLE/VRE Virtual Learning Environment / Virtual Research Environment,
typically a web Portal providing access to educational or research
services.

VM Virtual Machine

Web Application Either a) an interactive service provided through a web site, or b)
a J2EE ‘webapp’, a server-side implementation approach.

WRI Windber Research Institute

WSDL Web Services Description Language

WSRP Web Services for Remote Portlets, an OASIS standard. Version 1.0
is closely related to JSR-168, and Version 2.0 (in progress) with
JSR-286.

XML Extensible Markup Language

XUL XML User Interface Language

Bibliography

207

Bibliography

[1] Java Applets. http://java.sun.com/applets/

[2] Java Authentication and Authorisation Service (JAAS), Sun Developer Network.

http://java.sun.com/products/jaas/

[3] “Model-View-Controller”, Java BluePrints: J2EE Patterns 2000.

http://java.sun.com/blueprints/patterns/MVC-detailed.html

[4] PHP-Nuke. http://phpnuke.org/

[5] Research Councils UK: e-Science Programme. http://www.rcuk.ac.uk/escience/

[6] Web Services Description Language (WSDL), 2001. http://www.w3.org/TR/wsdl

[7] XML User Interface Language (XUL), Mozilla 2001.

http://www.mozilla.org/projects/xul/

[8] Apache Axis, Apache Web Services Project. http://ws.apache.org/axis/

[9] Universal Description, Discovery and Integration (UDDI) OASIS Standard, 2002.

http://www.uddi.org/

[10] W3C Web Services Activity. http://www.w3.org/2002/ws/

[11] Java 2 Platform Enterprise Edition, Version 1.4 (J2EE), 2003.

http://java.sun.com/j2ee/docs.html

[12] Java Server Pages, Version 2.0, 2003. http://jcp.org/en/jsr/detail?id=152

[13] Java Servlet 2.4 Specification, 2003. http://jcp.org/en/jsr/detail?id=154

[14] OASIS Web Services for Remote Portlets (WSRP) Technical Committee.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

[15] Portlet Open Source Trading site (POST). http://portlet-

opensrc.sourceforge.net/index.htm

[16] Portlet Specification (JSR 168), 2003. http://www.jcp.org/en/jsr/detail?id=168

[17] Simple Object Access Protocol (SOAP), 2003. http://www.w3.org/TR/soap/

[18] SOAP::Lite for Perl. http://soaplite.com/

[19] An OWL-based Web Service Ontology, OWL-S (formerly DAML-S), 2004.

http://www.daml.org/services/owl-s/

Bibliography

208

[20] Developing Virtual Research Environments, JISC Circular 2004.

http://www.jisc.ac.uk/index.cfm?name=funding_circular5_04

[21] JISC Virtual Research Environments Programme, 2004.

http://www.jisc.ac.uk/index.cfm?name=programme_vre

[22] JSR 127: JavaServer Faces, 2004. http://www.jcp.org/en/jsr/detail?id=127

[23] “My Yahoo”, 2004. http://my.yahoo.com/

[24] NetUnity - WSRP Portal and WSRP Portlet Framework for .Net.

http://www.netunitysoftware.com/e/

[25] OASIS Web Services Resource Framework (WSRF) Technical Committee, 2004.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf

[26] “Oracle Business Intelligence Discoverer New Features Overview”, 2004.

http://www.oracle.com/technology/products/discoverer/htdocs/oraclebi_discover

er_1012_fov.htm

[27] “Ajax: A New Approach to Web Applications”, Jesse James Garrett, 2005.

http://www.adaptivepath.com/publications/essays/archives/000385.php

[28] Apache Jetspeed 1.6 (“Fusion”), Apache Portals Project.

http://portals.apache.org/jetspeed-1/

[29] Apache Jetspeed 2, Apache Portals Project. http://portals.apache.org/jetspeed-2/

[30] Apache Pluto, Apache Portals Project. http://portals.apache.org/pluto/

[31] Apache Portals Bridges, Apache Portals Project. http://portals.apache.org/bridges/

[32] Apache Struts. http://struts.apache.org/

[33] Apache Tomcat. http://tomcat.apache.org/

[34] ASP.NET. http://www.asp.net

[35] BEA WebLogic Portal.

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/web

logic/

[36] CCLRC e-Science Centre. http://www.e-science.clrc.ac.uk/web

[37] Commons FileUpload, Apache Jakarta.

http://jakarta.apache.org/commons/fileupload/

[38] Commons Logging. http://jakarta.apache.org/commons/logging/

[39] Discovery Net Project, 2005. http://www.discovery-on-the.net/

Bibliography

209

[40] ESRI - GIS and Mapping Software. http://www.esri.com/

[41] eXo Portal. http://www.exoplatform.com

[42] Gems: A collection of small JSR-168 compliant Portlets. https://gems.dev.java.net/

[43] Generic SOAP Client. http://www.soapclient.com/soaptest.html

[44] GIS.com - the Guide to Geographic Information Systems.

http://www.gis.com/index.cfm

[45] Groove Virtual Office. http://www.groove.net/home/index.cfm

[46] IBM WebSphere Portal. http://www-306.ibm.com/software/websphere/

[47] Jakarta Tapestry. http://jakarta.apache.org/tapestry/

[48] Java Web Start Technology. http://java.sun.com/products/javawebstart/

[49] Java.net Portlet Community. http://community.java.net/portlet/

[50] JBoss Application Server. http://www.jboss.org/products/jbossas

[51] JBoss Portal. http://labs.jboss.com/portal/jbossportal/index.html

[52] Liferay Portal. http://www.liferay.com/

[53] Log4j, Apache Logging Services. http://logging.apache.org/log4j/docs/

[54] Macromedia Flash. http://www.macromedia.com/software/flash/flashpro/

[55] “MapServer Portlet”, 2005. http://wiki.apache.org/portals/MapServerPortlet

[56] MDL Chime. http://www.mdlchime.com/

[57] MDL CrossFire Commander.

http://www.mdl.com/products/knowledge/crossfire_commander/

[58] MDL DiscoveryGate. http://www.mdl.com/products/knowledge/discoverygate/

[59] Microsoft Office SharePoint Portal Server. http://office.microsoft.com/sharepoint/

[60] Moveable Type, 2005. http://www.sixapart.com/movabletype/

[61] OASIS Web Services Business Process Execution Language (WSBPEL), 2005.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

[62] “Online Banking”, Moneyextra Guides 2005.

http://www.moneyworld.co.uk/guides/online-banking-011690.html

[63] Open Grid Computing Environment (OGCE). http://www.collab-

ogce.org/nmi/index.jsp

[64] Oracle Application Server. http://www.oracle.com/appserver/index.html

Bibliography

210

[65] Oracle Business Intelligence.

http://www.oracle.com/technology/products/bi/index.html

[66] Oracle Portal. http://www.oracle.com/technology/products/ias/portal/index.html

[67] Oracle Spatial. http://www.oracle.com/technology/products/spatial/index.html

[68] “PathPort: The Pathogen Portal Web Project”, Virginia Bioinformatics Institute.

http://pathport.vbi.vt.edu/main/home.php

[69] PHP. http://www.php.net/

[70] PostNuke. http://www.postnuke.com

[71] Sakai Portal. http://sakaiproject.org/

[72] SciFinder Scholar, CAS. http://www.cas.org/SCIFINDER/SCHOLAR/

[73] Slashcode. http://www.slashcode.com/

[74] SMILES, Daylight Chemical Information Systems, Inc.

http://www.daylight.com/smiles/f_smiles.html

[75] Spotfire - Interactive Visual Analytics. http://www.spotfire.com/

[76] Stringbeans Portal. http://www.nabh.com/projects/sbportal

[77] Sybase Enterprise Portal.

http://www.sybase.co.uk/products/developmentintegration/enterpriseportal.html

[78] The GridSphere Portal Framework. http://www.gridsphere.org

[79] The Large Hadron Collider (LHC) at CERN. http://lhc.web.cern.ch/lhc/

[80] The London e-Science Centre. http://www.lesc.ic.ac.uk/

[81] The Perl Directory. http://www.perl.org/

[82] Typo3 Content Management System (CMS). http://www.typo3.com/

[83] uPortal by JA-SIG. http://www.uportal.org/

[84] Web Service Semantics - WSDL-S, 2005. http://www.w3.org/Submission/WSDL-S/

[85] WebCT. http://www.webct.com/

[86] Windber Research Institute. http://www.wriwindber.org/

[87] Amazon. http://www.amazon.com

[88] BBC News. http://news.bbc.co.uk

[89] BEA AquaLogic User Interaction (previously Plumtree Portal).

http://www.plumtree.com/products/

Bibliography

211

[90] CGB Bioinformatics Portal, Indiana University's Center for Genomics and

Bioinformatics. http://bioportal.cgb.indiana.edu/

[91] Condor Project. http://www.cs.wisc.edu/condor/

[92] deltaDOT Ltd.. http://www.deltadot.com/

[93] “Description of portlet work done for the Go-Geo! project” (EDINA), 2006.

http://www.gogeo.ac.uk/geoPortal10/PortletInfo.html

[94] European Bioinformatics Institute (EBI) - Software Tools.

http://www.ebi.ac.uk/Tools/

[95] GENIUS Grid Portal. https://genius.ct.infn.it/

[96] INFN Production Grid for Scientific Applications. http://grid-it.cnaf.infn.it

[97] InforSense KDE (Knowledge Discovery Environment).

http://www.inforsense.com/kde.html

[98] JavaScript, Mozilla. http://www.mozilla.org/js/

[99] JBoss PortletSwap. http://labs.jboss.com/portal/portletswap/index.html

[100] National Grid Service. http://www.ngs.ac.uk/

[101] NCBI Tools for Bioinformatics Research. http://www.ncbi.nlm.nih.gov/Tools/

[102] NIST Data Gateway. http://srdata.nist.gov/gateway/

[103] P-GRADE Grid Portal. http://www.lpds.sztaki.hu/pgportal/

[104] P-GRADE NGS portal. http://www.cpc.wmin.ac.uk/ngsportal/index.php

[105] “Portal Object Management – Dynamicity”, JBoss Portal v2.2 User Guide,

http://docs.jboss.com/jbportal/v2.2/user-guide/en/html/dynamicity.html

[106] Portlet Specification 2.0 (JSR 286), 2007. http://jcp.org/en/jsr/detail?id=286

[107] PubMed. http://www.pubmed.gov

[108] RCSB Protein Data Bank (PDB). http://www.rcsb.org/pdb/Welcome.do

[109] Sun N1 Grid Engine. http://www.sun.com/software/gridware/

[110] The Globus Alliance. http://www.globus.org/

[111] W3C Web Services Addressing (WS-Addressing) Working Group.

http://www.w3.org/2002/ws/addr/

[112] Wiki, Wikipedia. http://en.wikipedia.org/wiki/Wiki

[113] WS-Security OASIS standard.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Bibliography

212

[114] Yahoo Group: JSR 168 Portlets & Java Portals.

http://groups.yahoo.com/group/portlets/

[115] Google Gadgets. http://www.google.com/ig

[116] iPhone Web Apps. http://developer.apple.com/iphone/

[117] Java Message Service (JMS). http://java.sun.com/products/jms/

[118] Mac Dashboard Widgets. http://www.apple.com/downloads/dashboard/

[119] Netvibes. http://www.netvibes.com/

[120] Pageflakes. http://www.pageflakes.com/

[121] Widgets 1.0, 2007. http://www.w3.org/TR/widgets/

[122] Windows Live Gadgets. http://dev.live.com/gadgets/

[123] Windows Vista Gadgets.

http://vista.gallery.microsoft.com/vista/SideBar.aspx?mkt=en-us

[124] Yahoo Widgets. http://widgets.yahoo.com/

[125] A.Rowe, Y.Guo, D.Kalaitzopoulos, M.Osmond, and M.Ghanem. "The Discovery

Net System for High Throughput Bioinformatics". ISMB, Vol 19 p.i225-i231, 2003.

http://www.iscb.org/ismb2003/paperAbstracts/btg1031.pdf

[126] Andrew Cox. "Building Collaborative eResearch Environments", JISC Workshop

report 2004. http://www.jisc.ac.uk/index.cfm?name=event_eresearch

[127] BioTeam. "iNquiry", 2006. http://web.bioteam.net/metadot/index.pl?iid=2187

[128] Carole Goble and David De Roure. "Semantic Web and Grid Computing", 2002.

http://www.semanticgrid.org/documents/swgc/swgc-final.pdf

[129] D.Gannon, G.Fox, M.Pierce, B.Plale, G.von Laszewski, C.Severance, J.Hardin,

J.Alameda, M.Thomas, and J.Boisseau. "Grid Portals: A Scientist's Access Point

for Grid Services (Draft 1)", GGF Community Practice document 2003.

http://www.extreme.indiana.edu/~gannon/ggf-portals-draft.pdf

[130] David De Roure, Nicholas Jennings, and Nigel Shadbolt. "The Semantic Grid:

Past, Present, and Future". Proceedings of the IEEE, Vol 93 p.669-681, 2005.

[131] Deepak Alur, John Crupi, and Dan Malks. "Core J2EE Patterns", 2001.

[132] Dwight Deugo. "Mobile Agent Messaging Models", Fifth International

Symposium on Autonomous Decentralized Systems, 2001.

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/

Bibliography

213

&toc=comp/proceedings/isads/2001/1065/00/1065toc.xml&DOI=10.1109/ISADS.20

01.917429

[133] Elsevier MDL. "CrossFire Beilstein", 2005.

http://www.mdl.com/products/knowledge/crossfire_beilstein/index.jsp

[134] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. "Design

Patterns", 1995.

[135] G.Fox, M.Pierce, D.Gannon, and M.Thomas. "Overview of Grid Computing

Environments", Global Grid Forum Memo, GFD-I.9 2003.

http://www.gridforum.org/documents/GFD/GFD-I.9.pdf

[136] Glenn R Golden. "Cross Context Sessions & Pluto", Jakarta Pluto Discussion mailing

list 2004. http://mail-archives.apache.org/mod_mbox/portals-pluto-

user/200401.mbox/%3c83F94AE0-423B-11D8-86CE-

000A95A93076@umich.edu%3e

[137] Gregor Hohpe and Bobby Woolf. "Enterprise Integration Patterns", 2003.

[138] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. "Aspect-Oriented Programming",

1241 Proceedings of the European Conference on Object-Oriented Programming,

[139] Ian Foster. "Globus Toolkit Version 4: Software for Service-Oriented Systems".

IFIP International Conference on Network and Parallel Computing, Springer-Verlag

LNCS 3779, p.2-13, 2005. http://www.globus.org/toolkit/

[140] Ian Foster, Carl Kesselman, Jeffrey M.Nick, and Stephen Tuecke. "The Physiology

of the Grid: An Open Grid Services Architecture for Distributed Systems

Integration", Global Grid Forum 2002.

[141] Ian Foster, Carl Kesselman, and Stephen Tuecke. "The Anatomy of the Grid:

Enabling Scalable Virtual Organisations". International J.Supercomputer

Applications, Vol 15 2001.

[142] J G Liu, P J Mason, N Clerici, S Chen, and A Davis. "Landslide Hazard

Assessment in the Three Gorges Area of the Yangtze River using ASTER

Imagery.", IEEE IGARSS2003 21 July 2003.

[143] Jameel Amjad Syed. "Information Structuring for Managing Discovery".

Thesis/Dissertation, University of London PhD Computing, 2005.

Bibliography

214

[144] James Hendler. "Science and the Semantic Web", Science Vol 299 p.520-521, 2003.

[145] Jeffrey Frey, Steve Graham, Tom Maguire, David Snelling, and Stephen Tuecke.

"WS-Resource Framework and WS-Notification - Technical Overview", 2004.

http://www.nesc.ac.uk/talks/385/WS-ResourceFramework_UK_2004-01-28.ppt

[146] Jian Guo Liu and Jinming Ma. "Imageodesy on MPI & GRID for Co-seismic Shift

Study Using Satellite Optical Imagery", UK e-Science All Hands Meeting,

Nottingham, UK, Sept. 2004.

[147] Jian Guo Liu, Philippa J Mason, and Jinming Ma. "The co-seismic displacement of

Ms 8.1 Kunlun earthquake on 14th November 2001 measured from Landsat-7

ETM+ imagery", The 3rd International conference on Continental Earthquakes,

Beijing, China, 12 July 2004.

[148] John LaCasse. "How to get Session in portlet", Jetspeed-User mailing list 2005.

http://www.mail-archive.com/jetspeed-user@jakarta.apache.org/msg15009.html

[149] Jorge Cardoso and Amit Sheth. "Semantic e-Workflow Composition", 2002.

http://lsdis.cs.uga.edu/lib/download/TM02-004-Cardoso-Sheth.pdf

[150] Karl Czajkowski, Donald F.Ferguson, Ian Foster, Jeffrey Frey, Steve Graham, Igor

Sedukhin, David Snelling, Steve Tuecke, and William Vambenepe. "The WS-

Resource Framework (Whitepaper)", 2004.

http://www.globus.org/alliance/publications/papers.php#WSRF-Framework

[151] M.Ghanem, Y.Guo, J.Hassard, M.Osmond, and M.Richards. "Grid-based Data

Analysis of Air Pollution Data", Fourth International Workshop on

Environmental Applications of Machine Learning, 2004.

[152] M.Richards, M.Ghanem, Y.Guo, J.Hassard, and M.Osmond. "Sensor Grids for Air

Pollution Monitoring", UK e-Science All Hands Meeting 2004, Nottingham UK, 1

Sept. 2004.

[153] Mark Baker, Hong Ong, Rob Allan, and Xiao Dong Wang. "Virtual Research in

the UK: Advanced Portal Services", UK e-Science All Hands Meeting 2004,

Nottingham UK, 2 Sept. 2004.

http://www.allhands.org.uk/2004/proceedings/papers/223.pdf

Bibliography

215

[154] Martyn Foster, Daniel Hanlon, Jon MacLaren, James Marsh, Stephen Pettifer, and

Stephen Pickles. "Grid-Enabled Desktop Environments: The GRENADE Project",

UK e-Science All Hands Meeting 2004, Nottingham UK, 1 Sept. 2004.

[155] Michelle Osmond and Yike Guo. "Adopting and Extending Portlet Technologies

for e-Science Workflow Deployment", UK e-Science All Hands Meeting 2005,

Nottingham UK, 19 Sept. 2005.

http://www.allhands.org.uk/2005/proceedings/papers/446.pdf

[156] Mintel. "Mintel Report: UK Retail Briefing - Electricals Focus - December 2005",

2005.

http://reports.mintel.com/sinatra/reports/press_releases/view=press_view&levels

=536,1692/press_display/id=197382

[157] Nate L Root. "Say Goodbye to Portal Servers", Analyst Report: Forrester Trends

2005.

http://www.microsoft.com/office/sharepoint/prodinfo/forrester_mar04.mspx

[158] Navaneeth Krishnan. "Java.net Tip: Inter-portlet communication",

https://www.dev.java.net/files/documents/1654/8898/tip1.html

[159] P N Martin. "Measurement of Atmospheric Trace Gases Using Open Path

Differential UV Absorption Spectroscopy for Urban Pollution Monitoring".

Thesis/Dissertation, University of London PhD, 2002.

[160] Philip McCarthy. "Ajax for Java developers: Build dynamic Java applications",

IBM developerWorks 2005. http://www-

128.ibm.com/developerworks/web/library/j-ajax1/

[161] Punit Pandey. "Blog: JSR 168, WSRP, Portlets & Enterprise Portal", 2006.

http://portlets.blogspot.com/

[162] Raymond K Ng and Ganesh Kirti. "JAAS in the Enterprise", Java Developer's

Journal 2006. http://java.sys-con.com/read/171477.htm

[163] Richards, M., Ghanem, M., Osmond, M., Guo, Y., and Hassard, J. "Grid-based

analysis of air pollution data". Ecological Modelling, Vol 194 p.274-286, 2006.

http://www.sciencedirect.com/science/article/B6VBS-4J6WG0S-

1/2/ffb04b0b69410ea465a039655ab01a13

Bibliography

216

[164] Rob Allan, Alison Allden, David Boyd, Rob Crouchley, Nicole Harris, Liz Lyon,

Alan Robiette, David De Roure, and Scott Wilson. "Roadmap for a UK Virtual

Research Environment: Report of the JCSR VRE Working Group", 2005.

[165] Rob Allan, Chris Awre, Mark Baker, and Adrian Fish. "Portals and Portlets 2003",

NeSC Workshop Report: Edinburgh July 2003.

[166] Rob Crouchley, Adrian Fish, Rob Allan, and Dharmesh Chohan. "Sakai

Evaluation Exercise", JISC Report 2004.

http://www.grids.ac.uk/Sakai/sakai_doc.pdf

[167] Roberto Barbera. "The GENIUS Grid Portal", Portals and Portlets 2003,

http://www.nesc.ac.uk/action/esi/download.cfm?index=734

[168] S F Altschul, T L Madden, A A Schaffer, J Zhang, Z Zhang, W Miller, and D J

Lipman. "Gapped BLAST and PSI-BLAST: a new generation of protein database

search programs.". Nucleic Acids Res., 1997.

[169] S.Hassard, M.Osmond, F.Pereira, M.Howard, S.Klier, R.Martin, and J.Hassard.

"Distributed BioSensor systems for GM Crop Monitoring", UK e-Science All

Hands Meeting 2004, Nottingham UK, 1 Sept. 2004.

http://www.allhands.org.uk/2004/proceedings/papers/92.pdf

[170] Salman AlSairafi. "Visualisation and Data Mining of GIS Data".

Thesis/Dissertation, University of London MSc Advanced Computing, 2001.

[171] Salman AlSairafi, Filippia-Sofia Emmanouil, Moustafa Ghanem, Nikolaos

Giannadakis, Yike Guo, Dimitrios Kalaitzopoulos, Michelle Osmond, Anthony

Rowe, Jameel Amjad Syed, and Patrick Wendel. "The Design of Discovery Net:

Towards Open Grid Services for Knowledge Discovery". International Journal of

High Performance Computing Applications, Vol 17 2003.

[172] Stefan Egglestone, M.Nedim Alpdemir, Chris Greenhalgh, Arijit Mukherjee, and

Ian Roberts. "A portal interface to myGrid workflow technology", UK e-Science

All Hands Meeting 2005, Nottingham UK,

http://www.allhands.org.uk/2005/proceedings/papers/404.pdf

[173] Stefan Hepper and Marshall Lamb. "Best practices: Developing portlets using JSR

168 and WebSphere Portal V5.02", 2004. http://www-

Bibliography

217

106.ibm.com/developerworks/websphere/library/techarticles/0403_hepper/0403_

hepper.html

[174] The DAML Services Coalition. "DAML-S: Semantic Markup for Web Services",

2002. http://www.daml.org/services/daml-s/0.7/daml-s.html

[175] Tim Berners-Lee, James Hendler, and Ora Lassila. "The Semantic Web". Scientific

American, 2001. http://www.sciam.com/article.cfm?colID=1&articleID=00048144-

10D2-1C70-84A9809EC588EF21

[176] Uche Ogbuji. "An introduction to RDF: Exploring the standard for Web-based

metadata", IBM 2002. http://www-106.ibm.com/developerworks/xml/library/w-

rdf/?dwzone=xml&dwzone=xml

[177] V.Curcin, M.Ghanem, Y.Guo, M.Köhler, A.Rowe, J.Syed, and P.Wendel.

"Discovery Net: Towards a Grid of Knowledge Discovery", KDD-2002. The

Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. Edmonton, Alberta, Canada, 23 July 2002.

[178] Wayne Holder. "Session, Session, who's got my Session?", Wayne Holder's Blog

2005. http://weblogs.java.net/blog/wholder/archive/2005/02/session_session.html

Appendix A1

218

Appendix A1: Functions for retrieving Portlet IDs

The following functions can be used to retrieve or generate a unique ID for a portlet

window, and are included as utilities in our IPC Library.

public String MSG_PORTLET_ID = " message.portletID ";

/** Utility: get (and set, if not yet present) a un ique ID for this
* portlet instance, cached in the session.
* This uses the portlet context name, so IDs shoul d be unique
* across portlet applications.
* If useWindowID is set, it tries to retrieve the actual portlet window ID
* assigned by the portal. If not set, it generates a random number for the ID.
*/
public String getPortletID(PortletRequest request, boolean useWindowID){
 // see if portlet id has been set in session.
 PortletSession session = request.getPortlet Session(true);
 if (session.getAttribute(MSG_PORTLET_ID)== null
 || session.getAttribute(MSG_PORTLET_I D).toString().equals("")){
 // no id set; generate a new one
 String id = "";
 if (useWindowID){
 id = getPortletWindowID(req uest);
 }
 if (id== null || id.length()==0){
 // make a random ID
 double random = getRandomNumber();
 id = ""+random;
 }
 String context_name = request.getContextPath();
 session.setAttribute(MSG_PORTLET_ID , context_name+" _"+id);
 }
 return session.getAttribute(MSG_PORTLET_ID).toString();
}

private double getRandomNumber(){
 double n1 = Math.random();
 double n2 = Math.random();
 double random = n1 / n2;
 return random;
}

Appendix A1

219

/** Utility: Try to find the real portlet window ID , by setting a temporary
* attribute in the local portlet session.
* Returns null if unable to do so.
*/
public String getPortletWindowID(PortletRequest request){
 String windowID = null ;

 // 1. set a PORTLET_SCOPE attribute with a known na me, e.g. "retrieveID".
 // To ensure that there will be no interference fro m other portlets doing
 // the same, randomly generate part of this name.
 double random = MessageHelper.getRandomNumber();
 String att_name = " retrieveID "+random;

 PortletSession session = request.getPortlet Session(true);
 if (session== null){ return null ; }
 session.setAttribute(att_name, " test ", PortletSession.PORTLET_SCOPE);

 // 2. get a list of the attributes in the session, in the APPLICATION_SCOPE
 Enumeration names_enum = session.getAttributeNames(
 PortletSession.APPLICATION_SCOPE);

 // 3. find the full (namespaced) name of the attrib ute that was just set,
 // using PortletSessionUtil to find the one contain ing the PORTLET_SCOPE name
 while (names_enum.hasMoreElements()) {
 String name = (String) names_enum.nextElement();
 if (PortletSessionUtil.decodeScope(name)==PortletSess ion.PORTLET_SCOPE){
 String local_name = PortletSessionUtil.
 decodeAttributeName(name);
 if (att_name.equals(local_name)){
 // Found the attribute we set.
 // break down this full name into parts as describe d
 // in PLT.15.3 to e xtract the Window ID: the name
 // should be of the form
 // "javax.portlet.p.<ID>?<ATTRIBUTE_NAME>"
 String prefix = " javax.portlet.p. ";
 String suffix = " ?"+att_name;
 if (name.startsWith(prefix) && name.endsWith(suffix)) {
 windowID = name.substring(prefix.length(),
 name.length() - suffix.length());
 }
 }
 }
 }

 // 4. clean up: remove the PORTLET_SCOPE attribute that was set earlier
 session.removeAttribute(att_name, PortletSe ssion.PORTLET_SCOPE);

 return windowID;
}

Appendix A2

220

Appendix A2: Discovery Net Papers

For convenience, we include in this appendix three papers which provide further

details on projects discussed in this thesis.

• Sensor Grids for Air Pollution Monitoring: A paper on Discovery Net’s GUSTO

scenario, from the All Hands Meeting 2004[152]. M. Ghanem, Y. Guo, J. Hassard,

M. Osmond, and M. Richards.

• Distributed BioSensor systems for GM Crop Monitoring: A paper on Discovery

Net’s GM Crop scenario, from the All Hands Meeting 2004[169]. S. Hassard, M.

Osmond, F. Pereira, M. Howard, S. Klier, R. Martin, and J. Hassard.

• Adopting and Extending Portlet Technologies for e-Science Workflow Deployment: A

paper on the limitations of JSR-168 presented at the All Hands Meeting 2005[155].

M. Osmond and Y. Guo.

Additional Discovery Net papers:

• The Discovery Net System for High Throughput Bioinformatics[125]: A. Rowe, Y. Guo,

D. Kalaitzopoulos, M. Osmond, M. Ghanem. ISMB 2003

• The Design of Discovery Net: Towards Open Grid Services for Knowledge

Discovery[171]: S. AlSairafi, F. Emmanouil, M. Ghanem, N. Giannadakis, Y. Guo,

D. Kalaitzopoulos, M. Osmond, A. Rowe, J. Syed, P. Wendel. International

Journal of High Performance Computing Applications, Vol 17 Issue 3, 2003.

• Grid-based Analysis of air pollution data[163]: M. Richards, M. Ghanem, M. Osmond,

Y. Guo, J. Hassard. Ecological Modelling Volume 194, Issues 1-3 , 25 March

2006, Pages 274-286 Special Issue on the Fourth European Conference on

Ecological Modelling - Selected Papers from the Fourth European Conference

on Ecological Modelling, September 27 - October 1, 2004, Bled, Slovenia.

